BACKGROUND AND OBJECTIVE

Background

- Despite the existence of more than 30 FDA-approved antiepileptic drugs (AEDs), 20-36% of patients have uncontrolled. drug-resistant, or refractory disease.¹
- The use of long half-life (LHL) AEDs as primary monotherapy has been shown to reduce healthcare utilization and costs when used as primary monotherapy.²
- Whether these benefits are also associated with long-acting AEDs as adjunctive, rather than single agent, therapy is not known.

Objective

 To examine the impact of adding a LHL versus short half-life (SHL) adjunctive AEDs on the risk of hospitalization in patients with uncontrolled epilepsy.

METHODS

Study Design and Data Source

 Retrospective, longitudinal cohort study using the Symphony Health Solution (SHS) Patient Integrated Dataverse (IDV[®]) over the period of 8/1/2012 to 7/31/2017

Patient Selection

Figure 1: Patient Attrition Flowchart

Patients with ≥2 e	pilepsy medical claimsª≥30 days apart during the study period ^b
	N = 2,724,675
	^c therapy during the ID period ^d (first prescription fill date for adjunctive AED defined no claims for index AED in the 1 year prior to index date (baseline)
	N = 263,002
Patients with ≥1 fill of a non-index AE	ED in the 90 days prior to and 90 days post index date ^e and ≥1 epilepsy diagnosis in baseline or on the index date
	N = 86,031
,	ex date, and had continuous medical and pharmacy coverage during baseline and b) ^f , and were treated with only 1 AED half-life category (long or short-acting) during the 90 days prior to index
	N = 4,984

AED different from index AED prior to initiation of adjunctive therapy. Patients with multiple adjunctive AEDs were excluded. d 8/1/2013 to 7/31/2016. e Must have ≥1 of the same AED in the pre and post 90-day periods and treatment in post 90-day period must overlap with index treatment ≥60 days. ^f Patients were considered continuously covered during the periods between claims no more than 120 days apart.

Study Cohorts

- Two mutually exclusive cohorts (LHL vs. SHL) based on AED half-life (<20 versus >20 hours)
 - Short half-life AEDs included in the study were: Acetazolamide, brivaracetam, diazepam, divalproate, eslicarbazepine, ethotoin, ezogabine, fosphenytoin, gabapentin lacosamide, levetiracetam, methsuximide, oxcarbazepine, piracetam, pregabalin, primidone, rufinamide, stiripentol, tiagabine, valproic acid, and vigabatrin
 - Long half-life AEDs included in the study were: Carbamazepine, clobazam, clonazepam, ethosuximide, felbamate, lamotrigine, perpampanel, phenobarbital, phenytoin, topiramate, and zonisamide.

Study Measures

- Covariates of interest
- Baseline measures (Table 1)
- Adherence to any AED during 1-year follow-up period, measured as proportion of days covered (PDC) calculated as number of available days of any AED therapy divided by 365
- Outcome measure
 - Relative risk (RR) of all-cause hospitalization in the 1-year following index

Statistical Analysis

- Chi-square tests for categorical variables and two sample t-tests for continuous variables were performed.
- Poisson regressions with robust error variances³ were performed for the RR of all-cause hospitalization, adjusting for covariates of interest.

Risk of Hospitalization in Patients with Uncontrolled Epilepsy Treated with a

¹Research Consultant, Houston, TX; ²Partnership for Health Analytic Research, LLC, Beverly Hills, CA; ³Eisai Inc., Woodcliff Lake, NJ

RESULTS

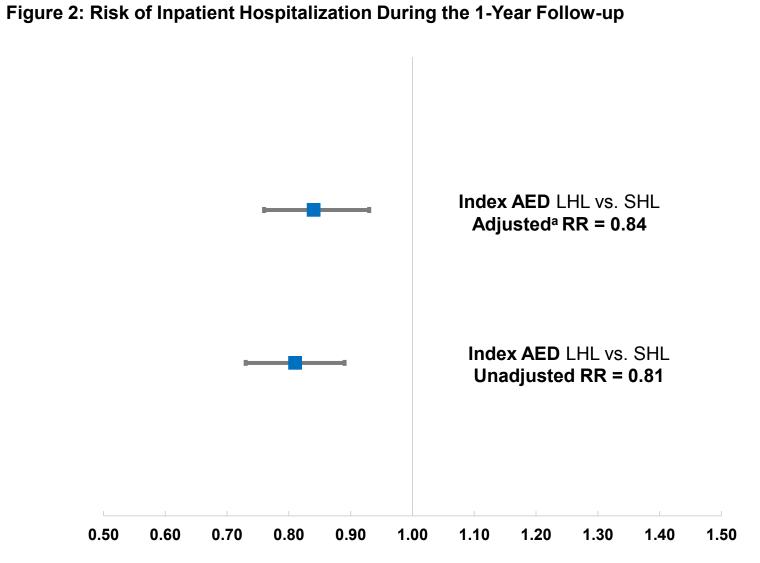
Patient Characteristics

• A total of 4,984 epilepsy patients were identified (2,705 SHL and 2,279 LHL) (Figure 1).

• Compared to the SHL cohort, patients in the LHL cohort were significantly younger [mean (SD): 43.9 (18.5) vs. 49.2 (17.2); p<0.001], more female (67.6% vs. 63.7% p=0.003), and had fewer comorbid conditions [mean (SD) CCI: 1.2 (1.8) vs. 1.8 (2.2); p<0.001] (Table 1).4

• During the 1-year follow-up period, the LHL cohort had a mean (SD) PDC of any AED of 0.97 (0.07) compared to 0.96 (0.08) in the SHL cohort (p<0.05).

Risk of Hospitalization


 In the 1-year post-index period, the unadjusted RR of hospitalization was lower in the LHL cohort vs. the SHL cohort [0.81 (95% CI: 0.73 - 0.89); p<0.001].

• After adjusting for group differences, the RR of hospitalization for the LHL cohort was significantly lower vs. the SHL cohort [0.84 (95% CI: 0.76 - 0.93); p=0.0007] (Figure 2).

Table 1: Baseline^a Patient Demographics and Clinical Characteristics

Characteristic	Long (LHL)	Short (SHL)	p value
N	2,279	2,705	
Age, mean (SD)	43.9 (18.5)	49.2 (17.2)	<0.001
Age group, n (%)			< 0.001
12-17	288 (12.6)	152 (5.6)	
18-34	461 (20.2)	435 (16.1)	
35-49	524 (23.0)	648 (24.0)	
50-64	686 (30.1)	911 (33.7)	
65+	320 (14.0)	559 (20.7)	
Sex , n (%)			0.003
Female	1,541 (67.6)	1,722 (63.7)	
Male	738 (32.4)	983 (36.3)	
Plan type, n (%)			<0.001
Commercial ^b	445 (19.5)	504 (18.6)	
Medicare	728 (31.9)	1,041 (38.5)	
Medicaid	826 (36.2)	862 (31.9)	
Unknown	280 (12.3)	298 (11.0)	
Charlson comorbidity index, mean (SD)	1.2 (1.8)	1.8 (2.2)	<0.001
Number of chronic conditions, mean (SD)	4.1 (2.0)	4.6 (2.1)	<0.001
Epilepsy/seizure type on index date, ^c n (%)			<0.001
Generalized	219 (9.61)	208 (7.69)	
Focal/partial onset	1,513 (66.39)	1,878 (69.43)	
Unspecified/Other	210 (9.21)	300 (11.09)	
Unknown	337 (14.79)	319 (11.79)	
Head injury, n (%)	189 (8.29)	275 (10.17)	0.023
Fractures, n (%)	177 (7.77)	263 (9.72)	0.015
Implantation of vagus nerve stimulator (VNS), n (%)	62 (2.72)	43 (1.59)	0.006
Cerebrovascular disease/stroke, n (%)	418 (18.34)	672 (24.84)	<0.001
Brain tumor, n (%)	95 (4.17)	169 (6.25)	0.001
Depression, n (%)	759 (33.30)	833 (30.79)	0.058
Post-traumatic stress disorder (PTSD), n (%)	100 (4.39)	77 (2.85)	0.003
Headache, n (%)	701 (30.76)	735 (27.17)	0.005
Hyperlipidemia, n (%)	836 (36.68)	1,181 (43.66)	<0.001
Hypertension, n (%)	970 (42.56)	1,415 (52.31)	<0.001

^a Patient demographics (e.g. age, sex, region, plan type) were reported on the index date (start of adjunctive AED treatment). Baseline comorbid conditions including Charlson comorbidity index ^{6,7}, number of Healthcare Cost and Utilization Project (HCUP) chronic conditions were reported during the 1 year prior to the index date. ^b Plan types include: commercial, cash, employer group, pharmacy benefits manager, processors, third party administrator, and workers compensation. ^c If no claim for epilepsy diagnosis on index date, the closest claim within ±90 days of index was

Relative risk (RR) of Inpatient Hospitalization

a Adjusted by age group, gender, insurance type, Charlson comorbidity index, epilepsy/seizure type on index, baseline epilepsy related events (head injury, fractures, VNS), baseline comorbid conditions (brain tumor, depression, PTSD, headache, hyperlipidemia, hypertension), PDC of any AED during follow-up, and pre-index AED.

CONCLUSIONS

Conclusions

- for LHL medications.
- disease.

Limitations

- the U.S.
- to perform the analysis.
- missing data were randomly distributed across the study population.

I. Chen Z, et al. JAMA Neurol. 2018;75(3):279-286.

- 2. Cramer JA, et al. Epilepsy Behav. 2014;32:135-41.
- 3. Zou G. Am J Epidemiol. 2004;159:702-6.
- 4. Charlson ME, et al. J Chronic Dis. 1987;40:373-383.

• In patients with uncontrolled epilepsy who were initiated on an adjunctive AED, the choice of a LHL vs. SHL was associated with a significantly lower risk of hospitalization

• The benefits of selecting a LHL AED as adjunctive therapy should be considered for appropriate patients with uncontrolled epilepsy. The observed reduction in utilization would likely reduce cost and improve the economic burden associated with this chronic

• The Symphony Health database on includes inpatient data from 30% of hospitals in

• We could not differentiate patients who were serviced by the hospitals included in the SHS data set from those with missing data from hospitals outside of the SHS data set

• We reported the relative risk of hospitalization instead of absolute rates, assuming that

REFERENCES