# Invasive Mechanical Ventilation in Idiopathic Pulmonary Fibrosis: Predictors of Use and Impact on Resource Utilization and Mortality

Joshua Mooney, MD<sup>1</sup>; Karina Raimundo, MS<sup>2</sup>; Eunice Chang, PhD<sup>3</sup>; Michael S. Broder, MD, MSHS<sup>3</sup>

<sup>1</sup>Stanford University, Stanford, CA, USA; <sup>2</sup>Genentech, Inc., South San Francisco, CA, USA; <sup>3</sup>Partnership for Health Analytic Research, LLC, Beverly Hills, CA, USA

# **BACKGROUND**

- Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive interstitial pneumonia of unknown cause and poor prognosis, occurring predominantly in older adults.<sup>1</sup>
- Hospitalizations in patients with IPF are often associated with acute respiratory failure.<sup>1</sup>
- During hospitalization, invasive mechanical ventilation (IMV) remains a treatment option despite being associated with poor outcomes.<sup>2-4</sup>

# **OBJECTIVES**

- To investigate trends and predictors of use of IMV in patients with IPF hospitalized with a principal diagnosis of respiratory disease.
- To investigate associations between IMV and length of stay (LOS), inpatient costs, and in-hospital mortality.

## **METHODS**

# **Design and Data Source**

- Cross-sectional cohort study using the National Inpatient Sample (NIS), the largest publicly available all-payer US inpatient database
  - Derived from discharge abstracts for > 7 million hospital stays per year from a nationally representative sample of acute care hospitals from states covering > 95% of the U.S. population<sup>5</sup>
- Variables included demographics, comorbid conditions, severity of illness (measured with All Patients Refined Diagnosis Related Groups [APR-DRG]), costs, LOS

#### **Inclusion Criteria:**

- Admission with claim for IPF (ICD-9-CM code 516.3, 516.31) between 2009 and 2011
- Principal diagnosis of respiratory disease (ICD-9-CM 460-519)

#### **Exclusion Criterion:**

Admission for lung transplant

#### **Statistical Analysis**

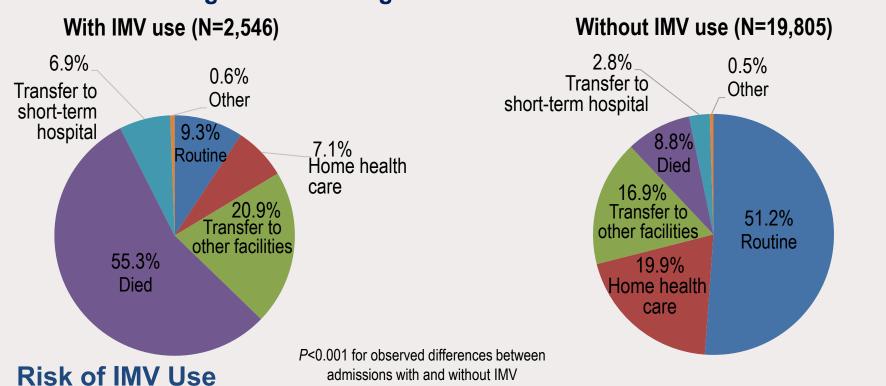
- Variables weighted to represent national estimates
- Costs inflated to 2011 U.S. dollars
- Logistic regression to determine predictors of IMV use and mortality
- Linear regression to determine predictors of hospital costs and LOS
- Domain analysis used to account for the use of subpopulations
- Statistical analyses performed using SAS® version 9.4

# **RESULTS**

# **Demographic and Clinical Characteristics**

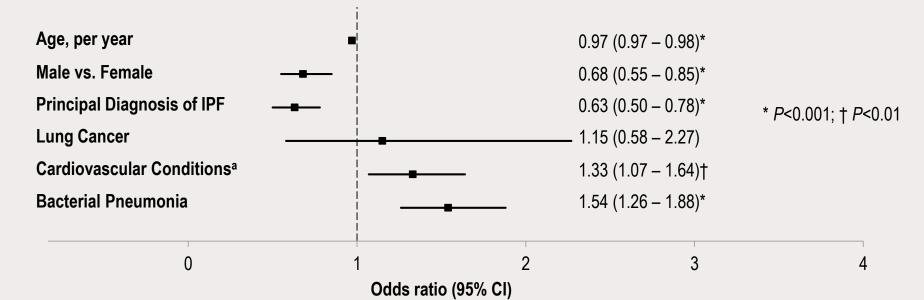
- Study included 22,350 IPF patients admitted with a principal diagnosis of respiratory disease, excluding lung transplant (Table 1).
- IMV use decreased, although not of statistical significance, from 2009 to 2011: 12.1% in 2009, 11.5% in 2010, and 10.7% in 2011.

| Table 1: Patien                    | e 1: Patient Demographics |                    |                 |         |  |  |
|------------------------------------|---------------------------|--------------------|-----------------|---------|--|--|
|                                    | IMV<br>N=2,546            | No IMV<br>N=19,805 | AII<br>N=22,350 | P Value |  |  |
| Age, mean (SE)                     | 65.9 (0.62)               | 70.5 (0.34)        | 70.0 (0.32)     | <0.001  |  |  |
| Female, no. (%)                    | 1,024 (40.2)              | 9,953 (50.3)       | 10,976 (49.1)   | <0.001  |  |  |
| Race, no. (%)                      |                           |                    |                 | 0.657   |  |  |
| White                              | 1,639 (64.4)              | 12,764 (64.5)      | 14,404 (64.4)   |         |  |  |
| Black                              | 224 (8.8)                 | 1,483 (7.5)        | 1,707 (7.6)     |         |  |  |
| Hispanic                           | 200 (7.8)                 | 1,910 (9.6)        | 2,110 (9.4)     |         |  |  |
| Other                              | 129 (5.1)                 | 999 (5.0)          | 1,128 (5.0)     |         |  |  |
| Missing                            | 353 (13.9)                | 2,649 (13.4)       | 3,002 (13.4)    |         |  |  |
| Principal diagnosis of IPF, no (%) | 802 (31.5)                | 8,823 (44.6)       | 9,626 (43.1)    | <0.001  |  |  |


## **Univariate Comparisons**

• Length of stay was 10.3 days longer and costs were \$38,182 higher in patients treated with IMV (Table 2).

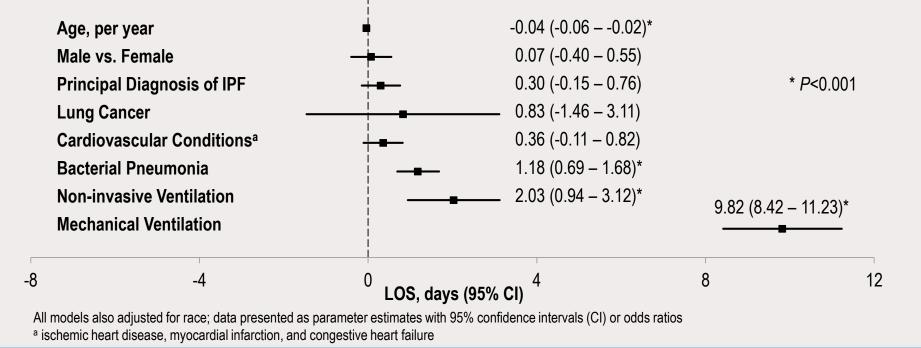
|                                                      | · ·                 |                    |                   |         |  |  |  |
|------------------------------------------------------|---------------------|--------------------|-------------------|---------|--|--|--|
| Table 2: Patient Comorbidities, LOS, and Total Costs |                     |                    |                   |         |  |  |  |
|                                                      | IMV<br>N=2,546      | No IMV<br>N=19,805 | AII<br>N=22,350   | P Value |  |  |  |
| COPD / Emphysema, no. (%)                            | 736 (28.9)          | 7,800 (39.4)       | 8,535 (38.2)      | <0.001  |  |  |  |
| Bacterial pneumonia, no. (%)                         | 1,252 (49.2)        | 7,352 (37.1)       | 8,604 (38.5)      | <0.001  |  |  |  |
| Lung cancer, no. (%)                                 | 59 (2.3)            | 348 (1.8)          | 407 (1.8)         | 0.380   |  |  |  |
| Cardiovascular conditions, no. (%)                   | 1,229 (48.3)        | 8,835 (44.6)       | 10,063 (45.0)     | 0.137   |  |  |  |
| Ischemic heart disease                               | 717 (28.2)          | 5,622 (28.4)       | 6,339 (28.4)      | 0.913   |  |  |  |
| Myocardial infarction                                | 267 (10.5)          | 1,078 (5.4)        | 1,345 (6.0)       | <0.001  |  |  |  |
| Congestive heart failure                             | 793 (31.1)          | 5,427 (27.4)       | 6,219 (27.8)      | 0.119   |  |  |  |
| Pulmonary hypertension                               | 19 (0.8)            | 65 (0.3)           | 84 (0.4)          | 0.146   |  |  |  |
| No. of chronic conditions, mean (SE)                 | 4.2 (0.06)          | 4.3 (0.03)         | 4.3 (0.03)        | <0.001  |  |  |  |
| APR-DRG severity of illness, no. (%)                 |                     |                    |                   | <0.001  |  |  |  |
| Minor loss of function                               | 5 (0.2)             | 443 (2.2)          | 447 (2.0)         |         |  |  |  |
| Moderate loss of function                            | 16 (0.6)            | 5,042 (25.5)       | 5,058 (22.6)      |         |  |  |  |
| Major loss of function                               | 341 (13.4)          | 10,197 (51.5)      | 10,538 (47.1)     |         |  |  |  |
| Extreme loss of function                             | 2,184 (85.8)        | 4,123 (20.8)       | 6,307 (28.2)      |         |  |  |  |
| Length of stay, mean (SE)                            | 16.5 (0.73)         | 6.2 (0.10)         | 7.4 (0.15)        | <0.001  |  |  |  |
| Total inpatient costs (2011 US\$), mean (SE)         | \$49,924<br>(2,490) | \$11,742<br>(390)  | \$16,042<br>(631) | <0.001  |  |  |  |
|                                                      |                     |                    |                   |         |  |  |  |


 Patients who used IMV were more likely to die in hospital and less likely to be routinely discharged (Figure 1).

## Figure 1: Discharge Status with and without IMV



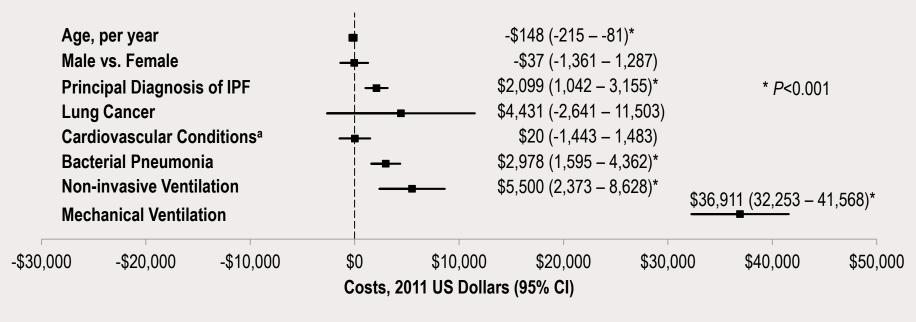
• Age, female gender, and principal diagnosis of IPF were associated with lower risk of IMV, while cardiovascular conditions and pneumonia were associated with higher risk (Figure 2).


## Figure 2: Logistic Regression Model for Risk of IMV Use



#### **Length of Stay**

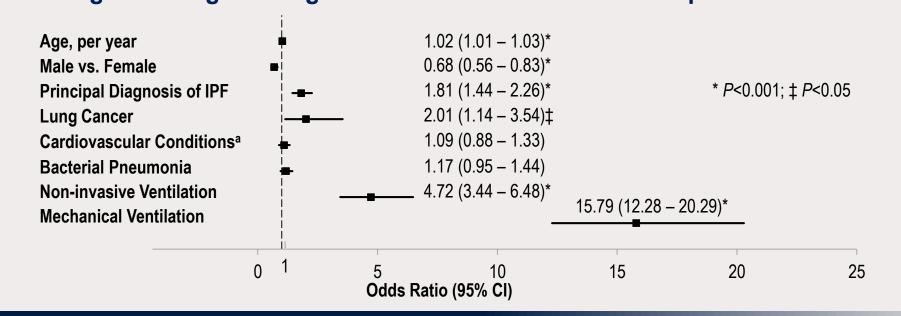
LOS was 16.1 days (95% CI 15-17.5) for patients with IMV versus 6.3 days (95% CI 6-6.5) without IMV (P<0.001), after adjusting for covariates (age, gender, race, principal diagnosis of IPF, lung cancer, cardiovascular conditions, and non-invasive ventilation use) (Figure 3).</li>


#### Figure 3: Linear Regression Model for Length of Stay



## **Total Inpatient Costs**

• Total inpatient costs were \$48,772 (95% CI 43,979 – 53,565) with IMV versus \$11,861 (95% CI 11,292 – 12,431) without IMV (*P*<0.001), after adjusting for covariates (**Figure 4**).


#### Figure 4: Linear Regression Model for Total Inpatient Costs



## Risk of In-Hospital Death

• The in-hospital death rate was 56.1% (95% CI 50.7 - 61.5) for patients with IMV versus 7.5% (95% CI 6.7 - 8.4) without IMV (*P*<0.001), after adjusting for covariates (**Figure 5**).

#### Figure 5: Logistic Regression Model for Risk of In-Hospital Death



## LIMITATIONS

- Patients transferred to other facilities may have died before discharge, which may have led to underreporting of mortality.
- Transplant-related admissions were excluded, likely leading to underestimation of the complete cost of IPF.
- Some variables involved in the clinical decision to initiate IMV were unavailable in NIS.
- Common chronic IPF comorbidities that do not lead to hospitalization (e.g. GERD, sleep apnea and obesity) are likely underreported in this database of inpatient services.

## CONCLUSIONS

- In a nationwide sample of IPF admissions, mechanical ventilation was used more in younger patients and in those with a non-IPF primary diagnosis particularly those with pneumonia or myocardial infarction.
- IMV was associated with a nearly 10-day increase in hospital stay, an increased cost of approximately \$37,000, and a more than 15-fold higher risk of death.
- This study confirms that mechanical ventilation is associated with poor outcomes in patients with IPF.

#### References:

1) Ley B et al. Am J Respir Crit Care Med. 2011;183(4):431-40.; 2) Mallick S. Respir Med. 2008;102(10):1355-9.; 3) Rush B et al. Respir Med. 2016;111:72-6.; 4) Raimundo K et al. BMC Pulm Med. 2016;16(1):2.;

5) HCUP Databases. www.hcup-us.ahrq.gov/nisoverview.jsp. Accessed Feb 2016.

American Thoracic Society May 13-18, 2016 San Francisco, CA, USA