A SYSTEMATIC LITERATURE REVIEW OF THE IMPACT OF 5-HT₃RA USE ON HEALTHCARE UTILIZATION IN PATIENTS WITH CHEMOTHERAPY-INDUCED NAUSEA AND VOMITING IN THE UNITED STATES Broder MS,¹ Faria, C,² Powers A,² Knoth RL,² Sunderji J,¹ Cherepanov D¹ ¹ Partnership for Health Analytic Research, LLC, ²Eisai Inc.

BACKGROUND

- Uncontrolled chemotherapy-induced nausea and vomiting (CINV) can lead to nutrient depletion, diminished function, disruption of chemotherapy, and increased costs.¹
- Standard antiemetic therapy includes 5-hydroxytryptamine receptor antagonists (5-HT₃RAs) for CINV prophylaxis, with palonosetron recommended in NCCN,¹MASCC,² and ASCO³ guidelines as the preferred 5-HT₃RA for CINV prophylaxis with moderately emetogenic chemotherapy (MEC).
- Among all 5HT₃RAs, palonosetron is preferred in NCCN for highly emetogenic chemotherapy (HEC), and in MASCC for AC/EC chemotherapy when an NK1RA is not available.¹⁻²
- There is evidence that using 5-HT₃RAs can reduce economic burden but no comprehensive review of the evidence is available.

OBJECTIVE

• This study aims to systematically review published literature on healthcare utilization associated with CINV prophylaxis with 5-HT₃RAs.

METHODS

Data Sources

- PubMed and 3 additional databases:
 - Database of Abstracts of Reviews of Effects (DARE)
 - NHS Economic Evaluation Database (NHS EED)
 - Health Technology Assessment Database (HTA)
- Four conferences: Academy of Managed Care Pharmacy (AMCP), American Society of Clinical Oncology (ASCO), International Society for Pharmacoeconomics and Outcomes (ISPOR), Multinational Association of Supportive Care in Cancer (MASCC)
- Bibliographies of included articles

Search Strategy

- Database searches were conducted during 7/2012 and conference years were 2010, 2011, and 2012.
- MeSH terms, subheadings, and key words used were: 5-HT₃RAs, dolasetron mesylate, granisetron, ondansetron, palonosetron, tropisetron, Anzemet[®], Kytril[®], Zofran[®], Aloxi[®], Navoban[®], cost, cost analysis, economics, utilization, CINV, emesis, nausea, and vomiting.

Inclusion/Exclusion Criteria

• Studies published before 1997, not in English or not reporting data on human subjects, CINV, 5-HT₃RAs, pharmacological treatment, or cost/utilization were excluded. For duplicate studies, only the full-length articles (not the conference abstracts) were included in the review.

Outcomes

• Utilization: rescue medication, outpatient service, and inpatient service use.

ASCO's Quality Care Symposium, November 2, 2013, in San Diego, CA, USA

Search Results and Description of Included Studies

Reference	Study Study		OCEBM ⁴	EBM⁴ 5-HT₃RA	Indication for	Chemo-	Total N (by drug)	Observation
	Years	Design	(Jadad ⁵)	Studied	Chemotherapy	therapy		Period (days)
Avritscher, 2010	97-02	CEA	2c	0, P	Br	MEC	707 (NR)	84
Feinberg, 2009	05-06	RETRO	2b	0, P	Br, Lu, CRC, other	LEC, HEC, MEC	3190 (P: 1636, O: 1554)	5
Feinberg, 2012	06-09	RETRO	2b	O, P	Lu	HEC, MEC	362 (P: 209, O: 153)	treatment + 7
Fox-Geiman, 2001	97-98	RCT	2b (3)	O, G	Pre-BMT	HEC	96 (Oral O: 32, Oral G: 32, IV O: 32)	9
Gralla, 1998		RCT	2b (4)	O, G	Lu, GI, other	HEC	1054 (G: 534, O: 520)	1
Grote, 2006		PRO	1b	Р	Br, Ly, Lu, CRC, other	MEC	58 (P: 58)	5
Hatoum, 2012	05-08	RETRO	2b	P, (O, G, D) ^A	Br, Lu	HEC, MEC	11974 (P: 4060, Other: 7914)	180
Knoth, 2011a ^B	08-09	RETRO	2b	(P, O, G, D) ^A	Br, Lu, CRC	HEC, MEC	9558 (NR)	30
Knoth, 2011b ^B	08-09	RETRO	2b	P, (O, G, D) ^A	Br, Lu, CRC	HEC	1518 (P: 1184, Other: 334)	30
Knoth, 2011c ^B	08-09	RETRO	2b	P, (O, G, D) ^A	Br, Lu, CRC	MEC	4394 (P: 3061, Other: 1333)	30
Knoth, 2012a ^B	05-09	RETRO	2b	O, P, G, D		HEC, MEC	8812 (P: 3726, O: 3018, G: 1143, D: 925)	5
Knoth, 2012b ^B	08-09	RETRO	2b	O, P, G, D		HEC, MEC	5912 (P: 4245, Other: 1667)	30
Lin, 2010 ^B	05-09	RETRO	2b	P, (O, G, D) ^A	Ly	HEC, MEC	2609 (P: 979, Other: 1630)	180
Mattiuzzi, 2010	05-08	RCT	2b (2)	O, P	Leukemia	MEC	143 (O: 47, P days 1-5: 48, P days 1,3,5: 48)	7
Schwartzberg, 2011	06-10	RETRO	2b	P, (O, G, D) ^A	Br, Ly, GI, Uro, other	HEC	4552 (P: 3574, Other: 978)	5
Yeh, 2011	06-08	RETRO	3b	0, P	Gy	HEC	53 (P: 34, O: 19)	7

^A Aggregate data of indicated 5-HT₃RAs. ^B Conference presentation. ^C Oxford Center for Evidence-based Medicine Levels of Evidence. ^D Jadad score to assess quality of clinical trials. Study Design: cost-efficacy analysis (CEA); non-randomized prospective observational study (PRO); randomized control trial (RCT); retrospective cohort (RETRO). 5-HT₃RAs: ondansetron (O); palonosetron (P); granisetron (G); dolasetron (D). Indication: breast (Br); colorectal (CRC); gastrointestinal (GI); gynecological (Gy); lung (Lu); lymphoma (Ly); urogenital (Uro); pre-bone marrow transplant (Pre-BMT); other: other cancer/not specified. Chemotherapy: highly emetogenic chemotherapy (HEC); moderately emetogenic chemotherapy (MEC); low emetogenic chemothereapy (LEC). NR: not reported.

- Of the 434 identified records, 16 reporting utilization in the US were reviewed (excluded: 29 duplicates, 389 off-topic records).
- Studies varied significantly in designs, patients, 5-HT₃RA regimens, and definition of outcomes.

Rescue Medication Use (rate per cycle for all patients unless indicated)

Defenses	5-HT ₃ RA Studied				
Reference	0	Р	G	D	Other ^B
Avritscher, 2010	61% ^C	56% ^C			
Feinberg, 2009	24%	67%			
Feinberg, 2012	83%	28%			
Fox-Geiman, 2001 ^A	91%		85%		
Fox-Geiman, 2001 ^A	79%				
Gralla, 1998	25%		31%		
Knoth, 2011b		7%			12%
Knoth, 2011c		16%			30%
Knoth, 2012a	11%	8%	20%	20%	
Knoth, 2012b	24%	14%	27%	31%	
Mattiuzzi, 2010 ^A	11%	6%			
Mattiuzzi, 2010 ^A		10%			
Schwartzberg, 2011		35%			35%

^AStudies included multiple times indicate differences in drug administration. ^B Data included use of other 5-HT₃RAs (specific breakdown was not provided), unless otherwise noted. ^C Represents a model input. <u>5-HT₃RAs</u>: ondansetron (O); palonosetron (P); granisetron (G); dolasetron (D).

Research conducted by Partnership for Health Analytic Research, LLC.

RESULTS

studies, fewer patients treated with nosetron required rescue medication versus ansetron users (56% vs. 61%, 28% vs. 83%, /s. 11%, 14% vs. 24%, 6% vs. 11%)

idies found that palonosetron users had a r rate of rescue medication use than patients ondansetron, granisetron, or dolasetron oth 2012a, Knoth 2012b).

the 9 studies including palonosetron users d this group had lower rates of rescue ication use than the comparator 5-HT₃RA.

Geiman (2001) reported relatively high rates scue medication use in ondansetron (91%,) and granisetron (85%) users.

Deference	5-HT ₃ RA Studied							
Reference	0	Ρ	Other ^A					
Outpatient								
Avritscher, 2010	10% ^B	5% ^B		of				
Yeh, 2011	10%	8%		οι				
Inpatient								
Avritscher, 2010	0.4% ^B	0.2% ^B		hc				
Feinberg, 2012	1%	1%		hc				
Hatoum, 2012		4%	6%	hc				
Hatoum, 2012		10%	14%	hc				
Hatoum, 2012		16%	23%	hc				
Knoth, 2011a			6%	hc				
Knoth, 2011a			1%	er				
Lin, 2010		7%	10%	er				
Yeh, 2011	5%	0%		hc				
Yeh, 2011	0%	0%		er				

^A Data included use of other 5-HT₃RAs (specific breakdown was not provided by given paper), unless otherwise noted. ^B Represents a model input used by author. <u>5-HT₃RAs</u>: ondansetron (O); palonosetron (P).

- 0% vs. 0%).

• Studies varied in designs, patients, 5-HT₃RA regimens, and definitions of outcomes. This heterogeneity prevented us from conducting meta-analysis.

studies (8 of 10).

CINV prophylaxis with palonosetron was shown to be associated with lower use of rescue medications, outpatient and inpatient services compared with ondansetron or other 5-HT₃RAs.

. National Comprehensive Cancer Network (2013) NCCN Clinical Practice Guidelines in Oncology: Antiemesis. National Comprehensive Cancer Network, Inc. 2. Roila F, et al.; ESMO/MASCC Guidelines Working Group. Guideline update for MASCC and ESMO in the prevention of chemotherapy- and radiotherapy-induced nausea and vomiting: results of the Perugia consensus conference. Ann Oncol. 2010; 21(5):v232-43.

Outpatient and Inpatient Service Use (rate per cycle for all patients unless indicated)

Description ffice visit (patients with emesis) tpatient, related to CINV ospitalization (patients with emesis) ospital re-admission related to CINV from day 1 to 7 days after last round of chemotherapy ospitalization (breast cancer group) ospitalization (lung cancer - carboplatin group) ospitalization (lung cancer - cisplatin group) ospitalization among patients with CINV mergency room visit related to CINV for patients with CINV mergency room/hospital admission events ospital re-admission related to CINV from day 1 to 7 days after last round of chemotherapy

mergency room visit related to CINV for patients with CINV

• 2 studies found palonosetron users required fewer outpatient services compared with ondansetron users (5% vs. 10%, 8% vs. 10%).

• 4 studies reported fewer patients treated with palonosetron (compared with ondansetron or other 5-HT₃RAs) required inpatient care (0.2% vs. 0.4%, 4% vs. 6%, 10% vs. 14%, 16% vs. 23%, 7% vs. 10%, 0% vs. 5%), while 2 studies reported similar use (1% vs. 1%,

LIMITATIONS

• The majority of the studies indicating palonosetron users used fewer services than users of other 5-HT₃RAs were retrospective

CONCLUSIONS

Use of palonosetron as a standard CINV treatment may lead to reduced utilization of rescue medications and healthcare services.

REFERENCES

3. Basch E, et al. Antiemetics: American Society of Clinical Oncology clinical practice guideline update. J Clin Oncol. 2011;29(31):4189-98.

4. OCEBM Levels of Evidence Working Group (2011) "The Oxford 2011 Levels of Evidence". Oxford Centre for Evidence-Based Medicine.

5. Jadad AR, et al. Assessing the quality of reports of randomized clinical trials: Is blinding necessary? Controlled Clinical Trials. 1996; 17(1):1-12.

Research supported by Eisai Inc.

269