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Bias Associated with Failing to Incorporate
Dependence on Event History in Markov Models

Tanya G. K. Bentley, PhD, Karen M. Kuntz, ScD, Jeanne S. Ringel, PhD

Purpose. When using state-transition Markov models to
simulate risk of recurrent events over time, incorporating
dependence on higher numbers of prior episodes can
increase model complexity, yet failing to capture this
event history may bias model outcomes. This analysis
assessed the tradeoffs between model bias and complex-
ity when evaluating risks of recurrent events in Markov
models. Methods. The authors developed a generic epi-
sode/relapse Markov cohort model, defining bias as the
percentage change in events prevented with 2 hypotheti-
cal interventions (prevention and treatment) when incor-
porating 0 to 9 prior episodes in relapse risk versus
a model with 10 such episodes. Magnitude and sign of
bias were evaluated as a function of event and recovery
risks, disease-specific mortality, and risk function.
Results. Bias was positive in the base case for a preven-
tion strategy, indicating that failing to fully incorporate
dependence on event history overestimated the preven-
tion’s predicted impact. For treatment, the bias was

negative, indicating an underestimated benefit. Bias
approached zero as the number of tracked prior episodes
increased, and the average bias over 10 tracked episodes
was greater with the exponential compared with linear
functions of relapse risk and with treatment compared
with prevention strategies. With linear and exponential
risk functions, absolute bias reached 33% and 78%,
respectively, in prevention and 52% and 85% in treat-
ment. Conclusion. Failing to incorporate dependence on
prior event history in subsequent relapse risk in Markov
models can greatly affect model outcomes, overestimat-
ing the impact of prevention and treatment strategies by
up to 85% and underestimating the impact in some treat-
ment models by up to 20%. When at least 4 prior epi-
sodes are incorporated, bias does not exceed 26% in
prevention or 11% in treatment. Key words: economic
analysis; cost-effectiveness analysis; decision analysis;
Markov models; outcomes research; priority setting for
spending. (Med Decis Making 2010;30:651–660)

Markov models, or state-transition models, can
be used to simulate the risk of recurrent events

or episodes over time for a hypothetical population.
The risks of recurrent events often depend on an
individual’s history of prior events. For example, in

predicting health and economic outcomes associ-
ated with illicit drug abuse, the probabilities of use
may change over time within and between indivi-
duals as people initiate use, recover, and potentially
experience recurrent episodes. Similarly, past his-
tory of other mental health disorders such as depres-
sion may affect subsequent relapse risk.

Markov models can incorporate dependence on
event history to a certain degree by adding health
states that track event history and make subsequent
event risk dependent on this history. As an example,
one can consider a model of illicit drug use, recov-
ery, and recurrence, which allows individuals to
recover from a drug-use event and to relapse. A sim-
pler model that includes only these 3 states (or 4
including death) would capture the lifetime patterns
of recovery and relapse without allowing the proba-
bilities of transitioning from one state to another to
change as a function of prior history. On the other
hand, creating a slightly more complex model by

Received 2 June 2009 from the RAND Corporation, Santa Monica, CA
(TGKB, JSR); University of California, Los Angeles (TGKB); Partnership
for Health Analytic Research, LLC, Beverly Hills, CA; and the Depart-
ment of Health Policy and Management, University of Minnesota, Min-
neapolis (KMK). This article was presented at the 30th annual meeting
of the Society for Medical Decision Making, October 2008, Philadel-
phia, Pennsylvania. This article describes work done with support from
the National Institute on Drug Abuse (NIDA 1R01 DA019993). Revision
accepted for publication 26 December 2009.

Address correspondence to Tanya G. K. Bentley, PhD, Partnership for
Health Analytic Research, LLC, 280 South Beverly Drive, #404, Bev-
erly Hills, CA 90212; telephone: (310) 858-9555; e-mail: tbentley@
pharllc.com.

DOI: 10.1177/0272989X10363480

MEDICAL DECISION MAKING/NOV–DEC 2010 651

 at UCLA on March 23, 2011mdm.sagepub.comDownloaded from 



adding states to track the number of past drug-use
episodes (e.g., episode-0, recovery-1, episode-1,
recovery-2, etc.) would allow relapse risk to vary as
a function of the number of tracked prior episodes.

However, incorporating dependence on higher
numbers of prior episodes in Markov cohort models
can result in increasing levels of model complexity.
Although microsimulation (i.e., 1st-order Monte
Carlo models) can more readily capture such depen-
dence on event history, this often comes at the
expense of the need for more detailed programming,
difficulty in debugging, and extensive computing
needs. In addition, although one may know that
relapse risk for an event such as illicit drug use
increases with prior history, one may not adequately
model the dependence on such history in a cohort
model. To the extent that the predictions of such
health and economic outcomes depend on the degree
to which this event history is captured, model output
may be biased. This bias may differentially affect dif-
ferent types of strategies evaluated in a model. For
example, results from a model that compares preven-
tion with treatment programs may be inaccurately
interpreted if results from one intervention are more
biased—or biased in a different direction—than those
from another type of intervention.

Given that the risk of subsequent event can be dif-
ferent up to only a limited number of prior episodes
in a Markov cohort model, the aim of this article is
to quantify the degree and direction of potential bias
under varying model conditions and assumptions.
We evaluate 2 types of interventions (a prevention
strategy to decrease event/relapse risk and a treat-
ment to increase probability of recovery), comparing
outcomes in models with varying degrees of depen-
dence on event history.

METHODS

We used a generic episode/relapse Markov cohort
model to evaluate the potential bias associated with
inadequately capturing dependence on event history
for subsequent risk of relapse (Figure 1). We quanti-
fied the bias when the risk of relapse was a function
of 0 to 10 tracked prior event episodes, using 10 as
the gold standard. This number was chosen because
a model that allows risk of relapse to be different for
more than 10 tracked prior episodes would be less
likely to reflect available data. Likewise, because of
the low proportion of individuals who would reach
more than 10 episodes, any risk change caused by
incorporating more tracked episodes would not be

likely to significantly affect results. The goal of the
analysis was thus to quantify the difference in cohort
model results when the maximum number of tracked
event episodes (NÞ varied from 0 to 9, compared with
those from a gold standard model in which N = 10.

We built a generic Markov cohort model of reoc-
curring event risk (Figure 1), which allows event/
relapse risk to vary over time as a function of the
number of tracked prior episodes up to N : The
cohort begins in an event-free, ‘‘well’’ state. Each
annual cycle, ‘‘well’’ individuals face a baseline
age-specific probability of an initial event occur-
rence. They may subsequently recover from the epi-
sode and then may relapse in future cycles. The
model incorporates N + 1 unique event states (N =
0, 1, . . . , 10), where N represents the maximum
number of recurrent event episodes—or relapses—
tracked and incorporated in the subsequent relapse
risk function. The simplest version of the model is
one in which N = 0 (e.g., subsequent relapse risk
does not depend on prior event history) that would
have 4 health states: well, event, recovery, and
dead. As N increases, the model becomes more
complex, adding N event states and N – 1 recovery
states to allow the risk of the ith recurrent event
from the ith recovery to increase with the number
of prior events (i = 1, 2, . . . , NÞ . For all values of i;
the model allows individuals to have an infinite
number of events; however, after N recurrences,
subsequent event risk remains at a constant level
such that overall relapse risk over 10 episodes is
the same at each age, regardless of N : In other
words, for all i>N , the probability of ith relapse
equals the probability of the (I + 1)th relapse, and
so forth. The full gold standard model, as shown in
Figure 1, thus has 23 states: 1 well state, 11
tracked-event states (1 initial and 10 relapses), 10
recovery states, and dead.

Individuals in any event state face a 30% proba-
bility of recovery. Persons can die either from event
or from other causes, and the outcome of interest is
cumulative time spent with episodic event over
a lifetime, with versus without a hypothetical inter-
vention. In the base case, the model starts with
a population of 12-year-olds, chosen because risk of
chronic, episodic events such as drug use tends to
increase in earnest in the early teenage years.1"10

We modeled the probability of dying from an event
using the following function of age-specific, all-
cause mortality (lageÞ—based on U.S. Vital Statistics
data11—and event-specific mortality (leventÞ:

PrðDieÞ ¼ 1" expð"ðlage þ leventÞÞ:
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All models were run using Treeage Pro! software
(Williamstown, MA). Model parameter values and
ranges are shown in Table 1.

We assumed that relapse risk changes as a func-
tion of i—the number of tracked prior event epi-
sodes—and used 2 different functional forms:

Basecase: Linear: pRelapsei ¼ pEv þ i&xlin,ði≤NÞ

Alternative function: Exponential: pRelapsei ¼

pEv&ðxexpÞi; ði≤NÞ;

where pRelapsei is the annual probability of experi-
encing the ith relapse, pEvent is the risk of initial
event occurrence, and xlin and xexp are model para-
meters that characterize the change in relapse risk
with number of prior tracked episodes. They were cal-
culated to attain plausible average relapse risks (e.g.,
8% for 12-year-olds) over 10 episodes, to reflect find-
ings in the published literature for recurrent episodic
conditions such as substance abuse and other mental
health disorders.1"10 Modeling the risk increase as

a linear function suggests that event risk increases by
a fixed additive quantity with each tracked episode.
Exponential growth yields a constant multiplicative
increase with each tracked episode. Figure 2a shows
the 2 risk functions given base-case and noninterven-
tion parameter estimates of a 3.44% initial event risk
and an 8% average relapse risk for 12-year-olds over
10 episodes. For both functions, relapse risk remains
constant after individuals reach the maximum num-
ber of tracked episodes, N (see Figure 2b). Long-term
risk therefore depends on N ; after N events, indivi-
duals may have additional relapses, but the risks for
these episodes do not increase any further, remaining
at a level calculated to keep overall risk constant over
10 episodes (tracked or untracked). We derived the
constant relapse risk assuming a linear function of risk
growth after N is reached. The base-case relapse risk
for i>N is

0:08" pEv þ xlin∗N
2

! "
N þ 1

11

! "# $
∗ 11

10"N

! "
;

Figure 1 Schematic diagram of a generic Markov cohort model of event-history bias.
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where xlin is as previously defined and pEv is the
age-specific risk of initial event occurrence. We
evaluated the impact of this assumption in sensi-
tivity analyses by allowing relapse risk to increase
to a different and lower constant level after indivi-
duals reach N tracked episodes (Figure 2c). In sen-
sitivity analyses, relapse risk for i > N equals that
of episode N :

pRelapsei>N ¼ pEpN :

We modeled 2 types of interventions: prevention
and treatment. Prevention decreases event risk by
a percentage among individuals who are currently
event free—including those in ‘‘well’’ or ‘‘recovery’’
states—and represents a general prevention strategy,
such as a campaign to ‘‘Just Say No’’ to drug use.
Treatment, on the other hand, was assumed to
increase recovery rate by a percentage among indivi-
duals currently experiencing an event. The outcome
of interest was cumulative time in event (CTE) that
is saved over a lifetime, with or without each inter-
vention. We evaluated the magnitude and sign of
bias as a function of all model parameters listed in
Table 1.

We define bias as the percentage change in CTE
prevented over a lifetime with 2 hypothetical inter-
ventions, when models allow 0 to 9 event episodes

to influence subsequent relapse risk (N = 0, 1, . . . ,
9), as compared with a model in which N = 10:

Bias ¼ CTESavedN " CTESaved10

CTESaved10
∗100%,

where CTESaved is the difference in CTE between
no intervention and intervention.

RESULTS

Table 2 shows the results of our base-case analysis
using the linear function of risk growth with number
of tracked prior episodes, and Figure 3a shows the
base-case bias results for both the linear and expo-
nential functions. For a starting population of 12-
year-olds with no history of prior events, age-specific
risks of initial event and lifetime event/relapse (3.4%
and 8%, respectively, for 12-year-olds), 1% event-
specific mortality, and 30% chance of recovery, the
model predicted that a prevention strategy that
decreases event and relapse risk by 10% would
reduce the cumulative time spent in event (e.g., using
drugs) by on average just less than 1 y, whereas treat-
ment that increases recovery by 10% would decrease
cumulative event time by half a year (see Table 2).
This benefit decreased with the number of tracked
prior episodes, starting for N = 0 (where results for

Table 1 Model Parameters and Assumptions

Variable Base-Case Estimate Range

Start age (y) 12 0–80
Probability of recovery 30% 10%–45%
Event-specific mortality rate (l //I// event) 0.01 0–0.05
Intervention
Prevention (decrease in event/relapse risk) 10% 1%–50%
Treatment (increase in probability of recovery)

Average event risk over 10 episodes, without intervention Age Estimate (%) Lower (%) Upper (%)
12–13 8.0 4.1 16.3
14–18 10.3 5.8 19.2
19–29 14.1 8.6 23.9
30–44 7.8 3.9 16.0
45–64 5.2 2.0 12.8

65+ 4.7 1.6 12.2
Annual baseline initial event risk (pEvent) without intervention

12–13 3.44 2.58 4.30
14–18 5.73 4.30 7.16
19–29 9.50 7.13 11.88
30–44 3.20 2.40 4.00
45–64 0.67 0.50 0.83

65+ 0.33 0.25 0.42
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linear and exponential risk functions will be the
same) at 1.06 and 0.66 years for prevention and treat-
ment strategies, respectively, and declining in pre-
vention to 0.67 and 0.88 years (linear and
exponential risk functions, respectively) and in treat-
ment to 0.43 and 0.35 years. The magnitude of time
in event saved was predicted to always be greater in
prevention than treatment and with linear as com-
pared with exponential risk functions. In prevention,
the direction of bias associated with incorporating
fewer than 10 event episodes in subsequent relapse
risk was positive in the base case, indicating an over-
estimated intervention benefit (Figure 3a), whereas in

treatment, it was positive for all N ≤ 2 and was nega-
tive—indicating underestimated benefit—for N > 2.
For both linear and exponential risk functions, the
shape of the bias in prevention from N= 0 to 10 was
an inverted ‘‘U’’ with its mode at N= 1 and in treat-
ment was ‘‘U’’ shaped with its minimum at N = 3.
The average bias over 10 tracked episodes was greater
with the exponential than linear functions of relapse
risk and with treatment than prevention strategies.
With the linear and exponential risk functions in the
base case, absolute bias reached 33% and 78%,
respectively, in prevention and 52% and 85% in
treatment.

We also evaluated the degree and sign of bias as
a function of cohort start age and intervention effect,
event/relapse risk, recovery risk, and event-specific
mortality; the results of the latter 3 are shown in Fig-
ure 3b-d. In general, neither the sign nor shape of
bias was sensitive to changes in these model para-
meters: Bias remained positive and overestimated
benefits in all prevention models except when
N = 0 with high event risk and changed from posi-
tive to negative (underestimating benefits) with
increasing values of N in treatment models. The mag-
nitude of bias was differentially sensitive to varying
these parameter estimates, depending on the function
of relapse risk growth (linear v. exponential) and
intervention type (prevention v. treatment).

For example, when the model was evaluated with
double the average lifetime event and relapse risk,
the effect of treatment was overestimated by more
than 100% when zero prior tracked episodes were
incorporated, but this bias (at N= 0) for the linear
function in prevention was –10%—indicating
a slightly underestimated effect—and remained at
less than 12% even when positive (Figure 3b). When
event/relapse risk was low, bias decreased with both
interventions and for both the exponential and lin-
ear risk functions. The magnitude of bias was nega-
tively associated with event-specific mortality and
age and was positively associated with probability
of recovery and intervention effect.

Figure 3e shows the results of varying our base-
case assumption regarding estimates of relapse risk
for event episodes beyond N :When we assumed that
this risk remained constant at that of the last tracked
prior episode (NÞ, the sign of the bias became nega-
tive in both prevention and treatment, and the mag-
nitude declined dramatically, to less than 42% for
any level of N and to less than 4% when at least 3
prior episodes were tracked. Overall, when consid-
ering any of these extreme model parameters, as
long as at least 4 prior episodes were tracked, bias
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Figure 2 (a) Event risk as linear and exponential functions of
relapse episode. (b) Base-case relapse risk function for 1, 3, 7,
and 9 tracked prior event episodes. (c) Relapse risk for 3 tracked
prior event episodes with 3 relapse risk functions.
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never exceeded 26% in prevention and 11% in
treatment.

DISCUSSION

We assessed the tradeoffs between model bias
and complexity when incorporating dependence on
prior event history in subsequent event risk in a
decision-analytic Markov cohort model. The use of
such models is particularly valuable in that the
models allow one to simulate event or disease
risk over time, thus improving model validity, espe-
cially when evaluating interventions for episodic/
recurrent risk events. However, a primary benefit of
Markov modeling—capturing risk changes based on
prior history—is limited by the very nature of such
models, in which the ability to incorporate past his-
tory is restricted to the number of model health
states. Model outcomes may thus be biased due to
the changing risk over time that is not fully captured
as individuals with past history and higher risk
progress more rapidly to disease than their history-
free counterparts. This article evaluates 2 inter-
ventions and compares outcomes in models with
varying degrees of dependence on lifetime event his-
tory, thus quantifying the degree and direction of
potential bias under varying model conditions and
assumptions.

Prior research had considered the impact of
between-person heterogeneity—both unobservable

and observable—on model outcomes. Kuntz and
Goldie12 looked at the impact of an unobservable
dichotomous factor that may affect event risk and
demonstrated that failure to incorporate these dif-
ferential event risks would bias model outcomes,
because such a model would not account for the fact
that higher-risk individuals in the model would
move into event states more rapidly than would those
with lower risk. The magnitude of this heterogeneity
bias was found to depend on baseline event risk and
the relative risk of event and could be as large as
50%.12 Similar conclusions were drawn in Zaric’s
analytic perspective of the issue.13 Bentley and
colleagues14 similarly assessed the tradeoffs between
model bias and complexity and/or data limitations
when categorizing continuous risk factors in Markov
models. The authors found that categorizing continu-
ously valued risk factors in Markov models has a neg-
ligible effect on model outcomes, remaining under
various assumptions at less than 4% absolute bias
when at least 2 categories were used.

What had not previously been determined, how-
ever, is the bias that may occur when an individual’s
event history affects future risk. Because of the
memoryless property of Markov models—by which
event risk in each state is independent of prior
states—the impact of history on future event risk
cannot be captured without adding additional
health states. For example, in Valenstein and collea-
gues’ 2001 model of depression screening in pri-
mary care, transition probabilities were different for

Table 2 Base Casea Predicted Events, Events Saved, and Event Time Saved in Prevention
and Treatment Interventions by Number of Tracked Prior Episodes

Number of Tracked
CTE (y) CTE Saved (y) Bias (%)

Episodes No Intervention Prevention Treatment Prevention Treatment Prevention Treatment

0 10.09 9.03 9.43 1.06 0.66 20.2 51.8
1 8.02 6.84 7.52 1.18 0.50 33.4 15.8
2 6.92 5.87 6.48 1.05 0.44 19.0 1.8
3 6.50 5.55 6.07 0.95 0.43 7.8 –0.9
4 6.36 5.45 5.93 0.90 0.43 2.6 –0.7
5 6.31 5.43 5.88 0.89 0.43 0.8 –0.3
6 6.30 5.42 5.87 0.88 0.43 0.2 –0.1
7 6.30 5.42 5.87 0.88 0.43 0.1 –0.04
8 6.30 5.42 5.87 0.88 0.43 0.0 –0.01
9 6.30 5.42 5.87 0.88 0.43 0.0 –0.01
10 6.30 5.42 5.87 0.88 0.43 0.0 0.00
Average 6.88 5.93 6.42 0.95 0.46 7.6 6.1

Note: CTE = cumulative time in event; Ix =.
a. Assuming a starting population of 12-year-olds, a linear function of risk growth with number of tracked prior episodes, age-specific initial event risk
and average risk over 10 episodes (3.44% and 8%, respectively, for 12-year-olds), a 30% probability of recovery, a 1% event-specific mortality, and a con-
stant relapse risk for i>N .
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patients who had never been depressed than for
those who were currently depressed or had a history
of depression and who were in either state but in or
out of treatment.15 This was accomplished in the
Markov model by adding separate health states for
currently depressed but not in treatment, depressed
and in treatment, history of depression and in remis-
sion, and history of depression and in treatment.

We evaluated event-time saved and the degree and
direction of event history bias for 2 different interven-
tions in simplified generic Markov cohort models
that incorporated varying degrees of dependence on
prior episodic history. We compared results under
varying model assumptions including risks of base-
line event, recovery, relapse, and event-specific mor-
tality, parameters considered important in helping
modelers evaluate the impact of including greater or
fewer event-history states when modeling episodic or
recurrent diseases of varying prevalence and mortal-
ity. Event-history bias was defined as the percentage
change in CTE that is prevented over a lifetime when
models allow 0 to 9 event episodes to influence sub-
sequent relapse risk as compared with a model that
incorporates 10 such prior episodes. A positive bias
thus indicates that failing to incorporate an adequate
number of prior events and the full effects of event
history on relapse risk overestimates the benefits
gained from an intervention, whereas a negative bias
suggests an underestimation.

For our base-case assumptions of a starting popu-
lation of 12-year-olds with no history of prior events
and a 3.44% age-specific baseline event risk, 1%
event-specific mortality, 30% chance of recovery,
and 8% age-specific lifetime event/relapse risk, the
model predicted that a prevention strategy would
reduce cumulative event time by, on average, more
than double that of treatment (approximately 1.0
and 0.5 y of event time saved for prevention and
treatment, respectively). This greater impact of pre-
vention than treatment was also predicted when
using an exponential function of risk growth with
prior history, with 0.8 and 0.4 average years of time
saved. The model projected that the bias caused by
failing to incorporate prior event history would be
positive—thus overestimating an intervention’s
effect—for prevention and that it would go from pos-
itive to negative with increasing values of N for
treatment. The average bias would be greater in pre-
vention than in treatment and when using the expo-
nential as compared with linear risk functions. As
long as at least 3 prior tracked episodes were incor-
porated, the model predicted that bias in either pre-
vention or treatment would not exceed 8% with the

linear function or 19% with exponential. Even when
using more extreme model parameters in sensitivity
analyses, absolute bias never exceeded 26% in pre-
vention and 11% in treatment as long as at least 4
prior episodes were tracked.

In general, we would expect event-history bias to
be positive and that failing to incorporate prior
event history would overestimate the impact of an
intervention. This is due to the overestimation in
earlier model cycles of recurrent event risk that is
necessary when fewer prior tracked episodes—
represented by N—are incorporated, in order to
account for the increased relapse risk that should be
captured for some individuals as they accumulate
history of prior events (e.g., for many mental health
disorders, with greater frequency of prior episodes
comes greater likelihood of subsequent risk). This is
exemplified in Figure 2b, which shows that the con-
stant relapse risk assumed after N has been reached
is higher at earlier episodes (values of iÞ, in order to
maintain an assumption of constant lifetime event
risk for all levels of prior history (N ’s) incorporated.
Thus, for smaller values of N , the model sends too
many individuals at early cycles to event states (see
Table 2), and the model overpredicts occurrence of
earlier event episodes—represented by i—and over-
estimates the benefits of an intervention. A model
that more fully captures event history, however
(such as that for N = 9, shown in Figure 2), can iso-
late the increased relapse risk to the specific indivi-
duals with prior history and thus more accurately
model event risk over time.

Although the model did—as expected—predict
that bias would be positive in the prevention strategy,
in treatment bias was predicted to be positive only for
0 ≤ N ≤ 2 and to become negative—indicating
an underestimated benefit—when incorporating 3 or
more prior episodes. This is likely because of 2
effects working against each other. As N increases,
CTE decreases—in both nonintervention and inter-
vention—due to the effect of overestimating lifetime
average event risk at earlier values of N , as explained
above and as occurred in the prevention strategy.
Simultaneously in treatment, however, the interven-
tion would—at lower values of N—both overestimate
the number of people in earlier events as well as
underestimate those in recovery, and this would
occur to a greater extent in intervention than in non-
intervention. The model consequently underesti-
mates cumulative event time saved, and as N
increases, this effect outweighs that of overestimated
lifetime risk, resulting in a negative bias in the treat-
ment intervention for higher values of N .
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We find that the effect on these results of varying
model input parameters is greatest when using an
exponential risk function to evaluate a treatment
intervention and when varying model estimates of
event and relapse risk, when bias could reach close
to 110% when zero prior episodes are tracked.
Despite this, bias was never predicted to exceed
60% in treatment when using a linear risk function
or to exceed 94% in prevention with either linear or
exponential risk functions. When relapse risk for
episodes beyond N was assumed to be the same as
that for episode N , the model projected that absolute
bias would decrease dramatically and that the sign
would be negative—indicating an underestimated
benefit—for prevention and treatment. Thus, when
allowing risk to remain constant after N but at
a lower level than that for the base case (as shown in
Figure 2c), at lower values of N the model would fail
to sufficiently compensate for the greater relapse
risk of individuals with prior history and would
underestimate benefits.

Yet whether we varied risk growth functions or
model input parameters, the model predicted that
absolute bias would decline rapidly with increas-
ing N , suggesting that incorporating just 3 to 4 epi-
sodes of prior event history can greatly improve
model accuracy when evaluating interventions for
recurrent events over time. Given the challenges of
obtaining data on the effects of multiple prior
events, this knowledge offers modelers the
opportunity for greater parsimony in model build-
ing, allowing the incorporation of only a few such
prior episodes and easing model and results
interpretation.

The results of this analysis must be considered in
light of its limitations. To most clearly demonstrate
the effects of failing to incorporate the full effects of
prior history on model outcomes, we used generic
disease-prevention models and made simplifying
assumptions about the relationship between event
history and relapse risk and about methods for mod-
eling interventions. Although we evaluated results
for both linear and exponential functions of relapse
risk growth, these may not be clinically accurate, as
the nature of such relationships between prior his-
tory and subsequent risk may be highly irregular,
unpredictable, and/or nonparametric.

Similarly, this model does not consider duration
or intensity of prior episodes or time since prior epi-
sode, any of which might have multiplicative effects
on the bias. For example, a longer or more severe
prior episode could elevate subsequent risk, such
that our results could underestimate bias for

individuals with long prior episodes, or our results
could similarly overestimate bias for those with
shorter or less severe prior episodes. Because popu-
lations with multiple recurrences of episode/relapse
conditions such as substance abuse tend be domi-
nated by people with either higher intensity or lon-
ger duration of use, it is likely that our results are
conservative and underestimate potential bias.

We also did not allow probability of recovery to
vary with the number of tracked prior episodes.
Although recovery rates could decrease with num-
ber of prior episodes (e.g., people may become more
addicted to a substance the more often it is used), it
could be possible that the opposite scenario would
play out and that history of success with prior recov-
ery predicts similar success in the future. Therefore,
at a population level, the potential impact—if any—
of varying recovery with prior history is unclear.
Future work should consider the possible effects of
these other aspects of event history on model out-
comes; evaluating the individual effects of duration
and severity of prior episodes, time since previous
episode, and impact of history on recovery could
contribute to better knowledge of total bias.

Markov state-transition models offer valuable tools
for simulating recurrent-event risks over time; yet
because of the memoryless nature of Markov states,
risk within each is assumed homogenous, and thus,
such models’ ability to capture the effects of prior
history on subsequent risk over time is limited by the
number of health states feasible in the model. Our
analysis indicates that when using Markov models to
evaluate interventions for episodic/recurrent dis-
eases, failing to incorporate an adequate number of
prior events and the full effects of event history on
relapse risk can substantially overestimate predicted
benefits of a prevention strategy and both overesti-
mate and underestimate those of treatment. These
potential errors should be considered by modelers
when designing models and by policy makers when
interpreting results of such analyses.
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