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Abstract
Background: To provide quantitative insight into current U.S. policy choices for cervical cancer
prevention, we developed a model of human papillomavirus (HPV) and cervical cancer, explicitly
incorporating uncertainty about the natural history of disease.

Methods: We developed a stochastic microsimulation of cervical cancer that distinguishes
different HPV types by their incidence, clearance, persistence, and progression. Input parameter
sets were sampled randomly from uniform distributions, and simulations undertaken with each set.
Through systematic reviews and formal data synthesis, we established multiple epidemiologic
targets for model calibration, including age-specific prevalence of HPV by type, age-specific
prevalence of cervical intraepithelial neoplasia (CIN), HPV type distribution within CIN and cancer,
and age-specific cancer incidence. For each set of sampled input parameters, likelihood-based
goodness-of-fit (GOF) scores were computed based on comparisons between model-predicted
outcomes and calibration targets. Using 50 randomly resampled, good-fitting parameter sets, we
assessed the external consistency and face validity of the model, comparing predicted screening
outcomes to independent data. To illustrate the advantage of this approach in reflecting parameter
uncertainty, we used the 50 sets to project the distribution of health outcomes in U.S. women
under different cervical cancer prevention strategies.

Results: Approximately 200 good-fitting parameter sets were identified from 1,000,000 simulated
sets. Modeled screening outcomes were externally consistent with results from multiple
independent data sources. Based on 50 good-fitting parameter sets, the expected reductions in
lifetime risk of cancer with annual or biennial screening were 76% (range across 50 sets: 69–82%)
and 69% (60–77%), respectively. The reduction from vaccination alone was 75%, although it ranged
from 60% to 88%, reflecting considerable parameter uncertainty about the natural history of type-
specific HPV infection. The uncertainty surrounding the model-predicted reduction in cervical
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cancer incidence narrowed substantially when vaccination was combined with every-5-year
screening, with a mean reduction of 89% and range of 83% to 95%.

Conclusion: We demonstrate an approach to parameterization, calibration and performance
evaluation for a U.S. cervical cancer microsimulation model intended to provide qualitative and
quantitative inputs into decisions that must be taken before long-term data on vaccination
outcomes become available. This approach allows for a rigorous and comprehensive description of
policy-relevant uncertainty about health outcomes under alternative cancer prevention strategies.
The model provides a tool that can accommodate new information, and can be modified as needed,
to iteratively assess the expected benefits, costs, and cost-effectiveness of different policies in the
U.S.

Background
In the United States, cervical cancer screening using
repeated cervical cytology at frequent intervals has sub-
stantially reduced the incidence of invasive cancer,
although there are still more than 3,000 deaths annually,
and disparities in cancer outcomes persist [1-4]. With the
development of reliable assays to detect high-risk, onco-
genic types of human papillomavirus (HPV) and vaccines
that are highly efficacious in preventing HPV types 16 and
18 in women not previously infected with these types,
there are important questions to address with respect to
cervical cancer prevention [5-8]. The two prophylactic vac-
cines that are currently in clinical trials include a quadri-
valent vaccine that targets HPV-6/11/16/18 (Gardasil;
Merck & Co., Inc., Whitehouse Station, New Jersey) and
bivalent vaccine that targets HPV-16/18 (Cervarix; Glaxo-
SmithKline, Uxbridge, Middlesex, United Kingdom).

From both individual and population perspectives,
options for primary and secondary prevention of cervical
cancer would ideally be deployed synergistically to
improve cancer outcomes, reduce disparities, minimize
the risk of over-detection of abnormalities likely to resolve
on their own, and enhance the cost-effectiveness of cervi-
cal cancer control. However, evaluating outcomes associ-
ated with different screening and vaccination strategies is
challenging, since the interventions are applied at differ-
ent time points and target different biologic processes
along the spectrum of HPV infection, carcinogenesis, and
invasive cancer. As such, no single, empirical study will be
able to evaluate all possible strategies, and even studies
aimed at assessing the benefits of one or two approaches
would require extremely large sample sizes with extensive
follow-up because of the long time course over which
individuals are vulnerable to acquiring HPV infection and
relatively low cancer incidence [6,9]. Integrating the best-
available epidemiologic data, computer-based mathemat-
ical models used in a decision-analytic framework can
identify those factors most likely to influence outcomes
and can inform decisions that need to be made amidst
considerable uncertainty.

Given the inevitable uncertainty around input parameters
to any mathematical model, an important feature of many
modeling efforts is the calibration of these parameter val-
ues in reference to observed epidemiologic data. Many
previous cervical cancer models used in cost-effectiveness
analyses have relied on manual calibration methods to fit
to select sources of epidemiologic data [10-21], a reason-
able approach for the questions addressed in previous
analyses [22]. However, the increased availability of epi-
demiologic data – together with the complexities of com-
paring vaccination of adolescents against two high-risk
HPV types and screening for high-grade cervical intraepi-
thelial neoplasia (CIN) in women throughout much of
adulthood – demands a more complex model with a
more systematic approach to translating parameter uncer-
tainty into the corresponding uncertainty around policy
outcomes. Like others, our group has begun to apply more
formal approaches to calibrating to multiple sources of
data simultaneously [22]. Our objectives in this paper are
to (1) describe a formal approach to the parameterization,
calibration, and evaluation of a cervical cancer model for
the U.S.; and (2) use this model to predict health out-
comes, as well as the uncertainty surrounding these pre-
dictions, associated with cervical cancer screening, HPV-
16/18 vaccination, and combinations of vaccination and
screening.

Methods
Overview
We developed a microsimulation model of cervical car-
cinogenesis reflecting the best currently available evi-
dence. The model development process included
definition of model structure, parameterization, calibra-
tion, and evaluation of model performance. Parameter
ranges for model inputs relating to natural history were
defined from longitudinal cohort studies. Observed epi-
demiologic data on outcomes such as age-specific HPV
prevalence and cervical cancer incidence prior to wide-
spread screening were used to define targets for calibra-
tion of model parameters. Parameter values were sampled
from the defined ranges, and simulations undertaken for
each sampled parameter set. The goodness-of-fit (GOF) of
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modeled outputs resulting from each candidate set of
input parameter values was evaluated using likelihood-
based GOF scores calculated based on the full array of cal-
ibration targets. We identified a subset of the sampled
parameter combinations that had scores that were statisti-
cally indistinguishable from that of the best-fitting set. We
evaluated model performance in terms of consistency
between modeled outcomes and those from large, popu-
lation-based studies. The types and sources of data used in
each of the three steps of model parameterization, calibra-
tion, and evaluation of performance are summarized in
Table 1[14,20,21,23-102]. To assess the implications of
our calibration approach in terms of the uncertainty in
modeled outcomes that follows from empirically-cali-
brated input parameters, we examined the range of mod-
eled cancer incidence reductions that could be expected
across the calibrated parameter sets in simulations of
screening (following current guidelines), widespread
administration of an HPV vaccine, and a combination of
vaccination and screening. Additional details of the
model type, structure, parameterization, calibration, and
evaluation are provided in the Appendix (see Additional
File 1).

Model structure, parameterization, and simulation
The stochastic microsimulation model simulates the tran-
sitions of individuals between a set of mutually exclusive
health states (Figure 1). In the model, HPV infection is
stratified into 5 categories: not infected; HPV-16; HPV-18;
other high-risk types (category includes types 31, 33, 35,
39, 45, 51, 52, 56, 58, 59, and 68); and low-risk types.
CIN status is modeled in three categories: no CIN; CIN 1,
and CIN2,3. Individual females enter the model at age 9
prior to sexual debut and remain in the model for the
entirety of their lives. Transitions between health states
occur at monthly intervals and depend on HPV type, age,
history of prior HPV infection, type-specific natural
immunity, previous treatment for CIN, and screening pat-
terns. Each month, a woman has an age- and type-specific
probability of being infected with HPV. Modeled proba-
bilities of age-related HPV infection act as a proxy for the
probability of being sexually active combined with the
probability of transmission and distribution of HPV types
among sexual partners. The model also has the capability
of considering the indirect effects on health outcomes
associated with herd immunity by modifying incidence
rates based on output from a dynamic model [103]. Most
women with HPV infections will develop transient abnor-
malities reflecting productive HPV infection, and some
will progress to CIN2,3. Women infected with high-risk
HPV types and having persistent high-grade CIN may
progress to invasive cancer, and those with invasive cancer
can develop symptoms or progress to the next stage of
cancer. We assume that symptomatic women with inva-
sive cancer receive stage-specific treatment for their dis-

ease and are subject to the corresponding stage-specific
survival rates. From every health state and in every month,
women face competing mortality risks from all other
causes.

We derived initial estimates and ranges for monthly tran-
sition probabilities required by the model from published
literature (Table 2). Because of uncertainty about the esti-
mated quantities within each study and heterogeneity

Table 1: Data sources used in model parameterization, 
calibration, and performance evaluation

Modeling Step Sources

Parameterization HPV infection rates
Primary Articles: [23-27]
Reviews: [14,20,21]
Progression rates to/within CIN
Primary Articles: [28-37]
Reviews: [14,20,21,38,39]
Regression rates from CIN and HPV 
clearance rates
Primary Articles: [37,40,41]
Reviews: [14,20,21,39]
Progression rates to/within cancer and 
cancer detection
Reviews: [14,20,21,42]
All-cause and cancer mortality rates
Reviews: [14,42,44]

Calibration Age-specific cervical cancer incidence
[43]
Cumulative cervical cancer incidence
[43,44]
Age-specific prevalence of high-risk and 
low-risk HPV
[45-61]
Age-specific prevalence of CIN1 and 
CIN2,3
[45,47,50,62-71]
HPV type distribution by CIN/cancer 
status
Primary Articles: [58,72-90]
Review: [91-94]
Type-specific duration of HPV infections 
in younger and older women
[41]

Evaluation* Age-specific high-risk HPV prevalence and 
age-specific HSIL+ cytology prevalence
[95]
Proportion of CIN1 and CIN2,3 that are 
HPV-16 and HPV-18 or other high-risk 
HPV infected
[96]
Screening reduction in age-specific cancer 
incidence rates and cancer stage at 
detection
[43,97]

* Screening patterns used in model evaluation: [98-102]
Page 3 of 20
(page number not for citation purposes)



Population Health Metrics 2007, 5:11 http://www.pophealthmetrics.com/content/5/1/11
across studies based on methodological and population
differences, the upper and lower bound of each search
range were defined to be broadly inclusive of (1) study-
reported confidence intervals when available; (2) the
highest and lowest estimate reported from different data
sources; and (3) expert opinion.

Model calibration
Our approach to model calibration was based on a multi-
dimensional random search in which input parameters
values were sampled from plausible ranges defined as
described above, and then separate simulations of the
model were run using each set of sampled parameter val-
ues.

Calibration targets
We defined 84 epidemiologic outcomes that comprised
targets for calibration, within the following categories:
type- and age-specific prevalence of HPV; type- and age-
specific duration of HPV infection; age-specific prevalence
of CIN1 and CIN2,3; age-specific cancer incidence; life-
time cancer risk; and HPV type-distribution within CIN
and cancer. For each calibration target, we determined a
95% confidence interval using data arising from popula-
tion-based studies [104]. When multiple data sources
were available, we used random-effects models for data
synthesis to produce combined point estimates and confi-
dence intervals [105]. For some calibration targets, for
which the quantities of interest were expected to vary
across epidemiologic settings, we limited the range of data

Model natural history schematicFigure 1
Model natural history schematic. Each ellipse represents a state in the natural history model. HPV is stratified by type. 
Each month, a woman has a chance of transitioning from her current state along one of the arrows emanating from that state 
to another state or else staying in her current state. All women also have a chance of dying from all-cause mortality, and 
women with invasive cancer have an additional stage-specific chance of dying from their cancer.
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Table 2: Model natural history parameters, search ranges, and calibrated parameters*

Variables 
†

Before Calibration Calibration Results

Parameter Ranges
Parameter Inputs Parameter Multiplier

Search Ranges
Minimum Maximum

Progression

From Normal to HPV Infection ‡
- Low-Risk HPV 0.1 – 34.5 1.0 – 4.0 0.2 137.3
- High-Risk HPV-16 0.1 – 23.4 1.0 – 8.0 §§ 0.5 188.6
- High-Risk HPV-18 0.0 – 13.8 1.0 – 8.0 §§ 0.0 110.1
- Other High-Risk HPV 1.2 – 114.5 1.0 – 8.0 1.5 937.3

From HPV Infection to CIN1 §
- Low-Risk HPV 55.8 – 64.7 0.1 – 6.0 51.7 377.5
- High-Risk HPV-16 57.5 – 102.3 0.1 – 6.0 13.2 621.0
- High-Risk HPV-18 57.5 – 102.3 0.1 – 6.0 14.8 595.7
- Other High-Risk HPV 57.5 – 102.3 0.1 – 6.0 27.3 615.7

From HPV Infection to CIN2,3 ¶
- Low-Risk HPV 0.4 – 9.3 0.0 – 0.1 0.0 0.9
- High-Risk HPV-16 2.2 – 46.7 0.1 – 1.0 0.3 46.6
- High-Risk HPV-18 2.2 – 46.7 0.0 – 0.1 0.0 4.4
- Other High-Risk HPV 2.2 – 46.7 0.0 – 0.1 0.0 4.6

From CIN1 to CIN2,3
- Low-Risk HPV 0.4 – 9.3 0.5 – 4.0 0.3 37.0
- High-Risk HPV-16 2.2 – 46.7 0.5 – 6.0 1.2 282.4
- High-Risk HPV-18 2.2 – 46.7 0.1 – 4.0 0.8 185.1
- Other High-Risk HPV 2.2 – 46.7 0.1 – 4.0 0.4 115.1

From CIN2,3 to Local Cancer ||
- Low-Risk HPV 0.0 0.0 0.0
- High-Risk HPV-16 0.6 – 72.2 1.0 – 5.0 1.1 362.0
- High-Risk HPV-18 0.6 – 72.2 1.0 – 5.0 0.8 362.3
- Other High-Risk HPV 0.6 – 72.2 1.0 – 3.0 0.7 216.1

Progression within Cancer
- Local Cancer to Regional Cancer 242.4 242.4 242.4
- Regional Cancer to Distant Cancer 303.8 303.8 303.8

Regression

From CIN2,3 to Normal **
- Low-Risk HPV 11.8 – 42.4 0.5 – 5.0 6.4 201.3
- High-Risk HPV-16 11.8 – 42.4 0.5 – 5.0 6.5 197.8
- High-Risk HPV-18 11.8 – 42.4 0.5 – 5.0 6.5 212.0
- Other High-Risk HPV 11.8 – 42.4 0.5 – 5.0 6.3 213.2

From CIN1 to Normal ††
- Low-Risk HPV 371.7 0.5 – 5.0 229.8 1968.9
- High-Risk HPV-16 371.7 0.5 – 5.0 193.2 1948.8
- High-Risk HPV-18 371.7 0.5 – 5.0 §§ 193.2 1948.8
- Other High-Risk HPV 371.7 0.5 – 5.0 310.3 1974.0

From HPV Infection to Normal ††
- Low-Risk HPV 371.7 1.5 – 6.0 1,114.2 2415
- High-Risk HPV-16 371.7 1.5 – 6.0 589.7 2324.4
- High-Risk HPV-18 371.7 1.5 – 6.0 §§ 589.7 2324.4
- Other High-Risk HPV 371.7 1.5 – 6.0 778.1 2355.7

Cancer detected by symptoms

- Local Cancer 210.6 210.6 210.6
- Regional Cancer 916.1 916.1 916.1
- Distant Cancer 2302.6 2302.6 2302.6
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sources that informed the definition of our targets. For
example, targets on HPV and CIN prevalence were based
only on North American studies, despite availability of a
wider range of possible data sources. Because the model is
intended for policy analyses of screening and vaccination
in the United States, targets relating to cancer were based
exclusively on data from the U.S.

To establish calibration targets for age-specific prevalence of
HPV and CIN we included studies that provided sufficient
information on sample size and prevalence of age-specific
infection with high-risk or low-risk HPV types [45-61].
Similarly, we included only studies that provided suffi-
cient information on sample size and prevalence of CIN1
or CIN2,3 [45,47,50,62-71]. For targets relating to dura-
tion of infection, data were derived from a single, longitudi-
nal Brazilian study that collected frequent, repeated
measures of HPV status in a large cohort of women over
an average follow-up of 53 months [41], supplemented
with secondary data from studies with shorter periods of
observation from the U.S.

To calibrate model parameters governing the natural his-
tory of disease in the absence of screening, targets on the
age-specific incidence of invasive cervical cancer were defined
based on 1959–60 data reported from multiple U.S. regis-

tries to the International Agency for Research on Cancer
(IARC) [43]. Observations from each registry were treated
as outcomes of independent experiments and combined
using a random-effects model [105]. To define targets on
the lifetime risk of cancer, we incorporated the lower and
upper confidence intervals from the age-specific cancer
incidence rates and all-cause, age-specific U.S. mortality
rates in a multiple-decrement, life table approach to
account for competing mortality hazards [44,106,107].

We defined targets on HPV type distribution in CIN and can-
cer based primarily on the systematic reviews of Clifford et
al., supplemented by subsequently published studies
[58,72-94]. Specifically, we estimated the proportion of
patients with CIN2,3 infected with HPV-16, HPV-18, or
another high-risk HPV type; the proportion of patients
with CIN1 infected with HPV-16/18 or another high-risk
type; and the proportion of patients with invasive cervical
cancers infected with either HPV-16 or HPV-18.

Parameter set selection
For model inputs, we used age-specific estimates derived
from longitudinal studies to define the baseline shape of
each parameter curve with respect to age, but searched
plausible ranges around these inputs by specifying ranges
for scalar multipliers applied to these curves. The plausi-

Mortality

- All Cause 0.1 – 297.1 0.1 297.1
- Local Cancer 19.2 19.2 19.2
- Regional Cancer 140.0 140.0 140.0
- Distant Cancer 489.9 489.9 489.9

Natural Immunity ‡‡

- Low-Risk HPV 0% 0% 0%
- Other High-Risk HPV 100% 0.0 – 1.0 4% 90%
- High-Risk HPV-16 100% 0.0 – 1.0 §§ 40% 99%
- High-Risk HPV-18 100% 0.0 – 1.0 §§ 26% 100%

* HPV = human papillomavirus; CIN = cervical intraepithelial neoplasia. Values are expressed as yearly rates per 1,000 women, unless otherwise 
noted.
† Ranges represent age-specific values. Ranges for calibrated values represent the combination multipliers applied to a pre-calibration value or pre-
calibration age-specific values, where appropriate.
‡ Multipliers were constrained to be higher for HPV-16 and HPV-18 than for other high-risk HPV.
§ Although pre-calibration rates of progression and the range of multipliers were consistent among all high-risk HPV types, the multipliers were 
allowed to vary independently by type in the parameter searches.
¶ A proportion of women with HPV transition directly to CIN2,3.
|| Infection with high-risk HPV is considered necessary for progression to invasive cancer
** 70% of women with CIN2,3 clear their infection, 15% retain detectable HPV infection with CIN1, and 15% retain HPV infection without any CIN.
†† Although pre-calibration rates of regression and the range of multipliers were consistent among all HPV types, the multipliers were allowed to 
vary independently by type in the parameter searches.
‡‡ Immunity represents the percentage reduction in risk of subsequent, type-specific infections after a woman has cleared an infection with the 
same type. Immunity for HPV-16 and HPV-18 are constrained to be higher than immunity for the category of other high-risk types.
§§ Search range conditional on value randomly drawn for another parameter. Regression rates for HPV-16 and HPV-18 associated CIN1 are 
assumed to be equal. Clearance rates for HPV-16 and HPV-18 are assumed to be equal. Natural immunity for HPV-16 and HPV-18 are both 
constrained to be higher than immunity to the category of other high-risk types.

Table 2: Model natural history parameters, search ranges, and calibrated parameters* (Continued)
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ble ranges around input parameter values comprised a
joint uniform prior distribution for the inputs. We ran-
domly sampled 1,000,000 parameter sets from this joint
prior distribution.

For each set of sampled parameter values, we simulated a
population of 100,000 individuals in the model and then
compared the modeled outputs corresponding to each of
the 84 calibration targets to the target values for these out-
puts. The formal comparison was based on a likelihood
score, computed under the assumption that calibration
targets were characterized by independent, normal proba-
bility density functions, with means and standard devia-
tions derived from the empirical 95% confidence
intervals. An overall goodness-of-fit (GOF) score was
computed as negative two times the sum of the log-likeli-
hood scores for each target. To compare the fit of different
parameter sets, we assumed that the distribution of GOF
scores across simulations may be approximated by a chi-
square distribution with the number of degrees of free-
dom equal to the number of calibration targets.

With likelihood-based GOF scores, we identified multiple
parameter set combinations whose outputs were simulta-
neously consistent with calibration targets derived from
epidemiologic data. In addition to this first criterion of
overall goodness-of-fit, we also evaluated candidate
parameter sets based on a second criterion, of goodness-
of-fit with respect to a subset of high-priority targets,
based on their relevance to policy questions regarding vac-
cination and screening. First, we determined our best-fit-
ting parameter set as the one with the lowest overall GOF
score – the model-generated input parameter set whose
simulated outputs were simultaneously closest to all cali-
bration targets. We identified those parameter sets with
GOF scores that were statistically indistinguishable from
the GOF score of the best-fitting set (based on a likelihood
ratio test with p < 0.05), and considered these to be good-
fitting also. To further restrict the selection of good-fitting
parameter values to those that provided the best fit to
high-priority targets, we computed a GOF subscore based
on the following high-priority targets: prevalence of CIN1
at ages 25–29 and 35–39 years, proportion of HPV-16/18
in CIN1, proportion of HPV-16 in CIN2,3 and cancer,
proportion of HPV-18 in cancer, and cancer incidence at
ages 45–49, 55–59, and 70–74 years. Finally, we accepted
those parameter sets that were good-fitting and had high-
priority GOF subscores amongst the top 1% of all param-
eter sets.

For efficiency, subsequent analyses were based on a ran-
dom resample of 50 parameter sets from the array of
accepted parameter sets to preserve the representation of
overall parameter uncertainty while reducing the compu-
tational intensity required for the simulations.

Model evaluation
We evaluated the performance of the model in terms of its
external consistency and face validity by comparing
model output to data from several large U.S. screening
studies not used in the parameterization or calibration of
the natural history model. These included the ASCUS/
LSIL Triage Study for Cervical Cancer (ALTS) and Portland
Kaiser Permanente studies as well as data from the NCI's
Surveillance Epidemiology and End Results (SEER) Pro-
gram [95-97]. For all evaluation targets, we derived both
point estimates and 95% confidence intervals from the
empirical data.

Baseline data from the Portland Kaiser Permanente study
were used to calculate the cross-sectional, age-specific
prevalence of high-risk HPV and of cervical cytology
results that were high-grade squamous intraepithelial
lesion or worse (HSIL+). Baseline data from the ALTS
study were used to calculate the cross-sectional propor-
tions of HPV-positive persons with CIN1 and CIN2+ (e.g.,
histology of CIN2 or worse) having HPV-16, HPV-18, or
other high-risk HPV types. Data from SEER for 2003 were
used to derive incidence of age-specific invasive cervical
cancer detected in the presence of cervical cancer screen-
ing, and analogous estimates were calculated from IARC
data for the U.S. prior to widespread screening. We esti-
mated the incidence reductions due to screening by sub-
tracting SEER incidence rates from IARC rates by age. SEER
data from 1996 to 2000 were used to calculate the propor-
tion of invasive cervical cancer cases detected at each SEER
historical stage (local, regional, and distant).

To compare consistency of model results to our external
evaluation targets, we simulated 5 screening scenarios for
each of the 50 parameter sets from the calibrated natural
history model. These included no screening and screening
using cervical cytology at 4 levels of intensity: every 1, 2,
3, or 5 years from ages 18 to 70. Additional assumptions
about screening, diagnosis, and treatment are provided in
the Appendix (see Additional file 1). Model outputs for
these simulations were based on cohorts of 1,000,000
women.

Because data from these studies were derived from
women with different past patterns of screening, we com-
bined modeled outputs from our 5 screening scenarios to
produce modeled outputs that would be consistent with a
cohort of women whose cervical cancer screening patterns
matched nationally observed, age-specific patterns of
screening [98,102]. For the ALTS targets, age-specific mod-
eled outputs were then collapsed across age categories
using a weighted average based upon the age structure of
the ALTS data. Since SEER stage at cancer detection targets
were based on women with detected cervical cancer,
matched modeled outputs (e.g., the number of cervical
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cancer cases detected at each stage for each screening sce-
nario) were combined using screening patterns derived
from case-control studies of women with diagnosed cervi-
cal cancer [99-101]. We assessed model performance in
terms of its external consistency and face validity using a
benchmark of overlap between the model range and the
study's confidence interval or range. Similarity in age pat-
terns between modeled and study outcomes based on vis-
ual inspection was used as a further criterion for assessing
model performance.

Quantifying the impact of model calibration
A key motivation of this study was to better reflect param-
eter uncertainty critical to policy analyses, for example,
evaluations of cost-effectiveness of vaccination and
screening interventions to prevent cervical cancer. While a
full consideration of alternative prevention strategies is
beyond the scope of this study, we provide an illustrative
example by using the empirically calibrated model to
project the reduction in cervical cancer that would be
expected with HPV vaccination and cytology-based
screening at different frequencies. We assumed the pro-
phylactic HPV vaccine would be given to all women prior
to age 12, and assumed complete, lifelong protection
against HPV-16 and -18. For each of the 50 resampled
good-fitting parameter sets, we estimated cumulative cer-
vical cancer incidence with and without vaccination or
screening and examined the distribution across parameter
sets, of reductions in cervical cancer incidence, expressed
as percentages. The distributions of cancer incidence
reduction under alternative prevention strategies illustrate
how calibration of model input parameters to epidemio-
logic data can be used to quantify the uncertainty around
results of policy interest.

Across the 50 good-fitting parameter sets, we calculated
the pair-wise correlation coefficients for expected cervical
cancer reduction due to screening at different frequencies,
vaccination without screening, and screening at different
frequencies and vaccination used in combination. For this
analysis, the unit of observation was the parameter set.
The significance (p < 0.05) of the correlation was assessed
using a Bonferroni correction for multiple comparisons.
The aim of the analysis was to evaluate relationship of
benefit derived from screening and vaccination used
alone or in combination: specifically, whether parameter
sets in which screening produced more benefit also
showed more benefit from vaccination and whether the
benefit from screening used at different frequencies com-
bined with vaccination was correlated within parameter
sets.

Statistical analysis
The microsimulation was implemented in C++ on high-
performance Linux computer clusters. Analyses of results

were performed with Stata/SE 9.2 for Windows (Stata-
Corp LP, College Station, TX) and Microsoft Office Excel
2003 SP2 (Microsoft Corporation, Redmond, WA).

Results
Model calibration
For 1,000,000 randomly generated input parameter sets,
approximately 1,000 input parameter sets had GOF scores
that were statistically indistinguishable from that of the
best-fitting set (at p < 0.05). Of these input parameter sets,
183 met the additional criterion of being in the top 1 per-
cent of fits for the high-priority subset of calibration tar-
gets. From the parameter sets accepted based on these two
criteria, 50 were randomly resampled for further analyses
and evaluation. Table 2 shows the results of calibration on
the range of model input parameters. Further details on
the results on calibration are documented in the Appendix
(see Additional file 1).

Figure 2 and Figure 3 compare the calibration targets to
the range of model outputs before and after calibration.
The process of calibration improved model fit for all cali-
bration targets. The greatest improvement in model fit is
noted in age-specific prevalence of CIN2,3 and age-spe-
cific incidence of invasive cervical cancer. Observed dura-
tions for low-risk HPV in all ages, for HPV-16 in women
younger than 30 years, and for HPV-18 in women 30 years
or older are overestimated for some parameter sets, but
the pattern of the increased duration for higher risk HPV
types within age categories is consistent with calibration
targets. Age-specific low-risk HPV prevalence is generally
low for women under 30, and CIN1 prevalence is low for
25–29 year-olds. HPV type distribution within neoplasia
and cancer category, age-specific prevalence of high-risk
HPV and CIN2,3, and age-specific incidence of invasive
cancer demonstrate consistency between modeled out-
comes and calibration targets.

Model evaluation
We compared the model-predicted screening outcomes
across the spectrum of HPV infection and cervical cancer
to selected studies not used in parameterization or calibra-
tion of the model. Figure 4A shows the 95% confidence
intervals for age-specific high-risk HPV prevalence among
women enrolled in the Portland Kaiser Permanente study
compared with modeled outputs for women whose
screening intensities were derived from national averages.
Model output is consistent with the general shape of
decline in high-risk HPV prevalence for older ages. For
some parameterizations, the model produces lower esti-
mates of age-specific prevalence than those from the Kai-
ser sample. Figure 4B shows the 95% confidence intervals
for age-specific proportion of cytology results that were
HSIL or worse among women enrolled in the Portland
Kaiser Permanente study compared with modeled outputs
Page 8 of 20
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for women whose screening intensities were derived from
national averages. Modeled outputs fall within their
respective confidence intervals for all age ranges.

Figure 4C and 4D show the 95% confidence intervals for
the proportions of CIN1 and CIN2+ infected with either
HPV-16 or HPV-18, or only with other high-risk HPV
types, compared with modeled outputs for women whose
screening intensities were derived from national averages.
Model output is consistent with the general trend of an
increasing proportion of neoplasia being infected with
HPV-16 or HPV-18 as the severity of neoplasia increases.
Although modeled ranges overlap the 95% confidence
intervals of the ALTS study, they are wider and more vari-
able for CIN1. For CIN2+, model output is more consist-
ent with the study data.

Figure 5A shows the range of differences between
observed age-specific detected cervical cancer incidence in

the presence or absence of screening (from SEER 2003 and
IARC 1959–1960, respectively) compared with the mod-
eled outputs for women without screening and those
women whose screening intensities were derived from
national averages. Ranges from observed and modeled
data overlap for all age categories. Even though the mod-
eled ranges overlap for women above 60 years of age, the
modeled reduction in age-specific detected cancer inci-
dence tends to be lower than observed values for this age
group. Figure 5B shows a comparison of modeled distri-
bution of stage at detection among women with detected
invasive cervical cancer to matched SEER data
(1996–2000). Model output is consistent with the SEER
cancer stage data.

Impact of uncertainty
Figure 6 summarizes the distribution across 50 good-fit-
ting parameter sets of cumulative cervical cancer incidence
reductions with an HPV-16/18 vaccine, with current

Calibration to empirical dataFigure 2
Calibration to empirical data. (Panels A through D) Black horizontal bars represent the upper and lower bounds of the 
95% confidence intervals of each calibration target. Dashed gray lines represent model outputs prior to calibration and selec-
tion. Green lines represent model outputs after calibration and selection. Vertical axes represent duration, prevalence, propor-
tion, or incidence rate as appropriate, and horizontal axes represent age or other categories as appropriate.
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screening guidelines carried out at different frequencies,
and with combined vaccination and screening. Reduc-
tions range from 60 to 88% for HPV vaccination. While
the expected reduction in cancer incidence is 75%, param-
eter uncertainty implies a substantial range of possible
benefits: more than 20% of the parameter sets yield reduc-
tions in incidence that differ from the mean reduction by
more than 10 percentage points. Screening reduces cancer
by 76% (range across all 50 parameter sets: 69–82), 69%
(60–77), 62% (51–71), and 50% (39–61) for frequencies
of every 1, 2, 3, and 5 years, respectively. Model results
under frequent screening are less susceptible to parameter
uncertainty than less frequent screening or vaccination
alone. The range of cancer reduction from screening more
frequently than every 3 years exhibits substantial overlap
with vaccination. When screening and vaccination are
combined cancer incidence reductions are 94% (90–97),
93% (89–97), 91% (86–96), and 89% (83–95) for fre-
quencies of every 1, 2, 3, and 5 years, respectively. Uncer-
tainty is further reduced under combined screening and

vaccination programs, and less frequent screening com-
bined with vaccination has expected benefits greater than
vaccination alone or yearly screening.

Across parameter sets, estimated cancer reductions associ-
ated with screening at different frequencies are signifi-
cantly positively correlated (Table 3); in other words,
those parameter sets yielding high benefits for a given
screening frequency also typically indicate high benefits
for other screening frequencies as well. This high correla-
tion suggests that factors that influence the effectiveness of
screening programs at a variety of screening frequencies
(e.g., duration in CIN2,3 prior to progressing to invasive
cancer or the proportion of HPV infections of different
types leading to CIN) are captured within parameter sets.
There is no significant correlation between cancer reduc-
tions due to vaccination alone and those due to screening
alone at any frequency. While screening strategies achieve
benefit by detecting and removing CINs, some of which
may have progressed to cancer, vaccination acts to prevent

Calibration to empirical dataFigure 3
Calibration to empirical data. (Panels A through C) Black horizontal bars represent the upper and lower bounds of the 
95% confidence intervals of each calibration target. Dashed gray lines represent model outputs prior to calibration and selec-
tion. Green lines represent model outputs after calibration and selection. Vertical axes represent duration, prevalence, propor-
tion, or incidence rate as appropriate, and horizontal axes represent age or other categories as appropriate.
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type-specific HPV infection. The pattern of correlation
observed is consistent with the observation that uncer-
tainty about HPV infection and clearance is loosely con-
nected to CIN progression and regression. More
importantly, vaccination combined with screening pro-
vides positive synergy for cancer prevention as evidenced
by earlier results that screening alone and vaccination
alone both produce substantial cancer reduction, screen-
ing alone and vaccination alone are not correlated, and
the positive, significant correlation in cancer reduction as
screening frequency is increased in the presence of vacci-
nation.

Discussion
We systematically calibrated a microsimulation model of
HPV and cervical cancer in the United States to multiple
epidemiologic studies using a likelihood-based approach.
By characterizing uncertainty in disease natural history
using a model that includes both vaccination and screen-
ing capabilities, we demonstrated the impact of the

approach in terms of quantifying the uncertainty about
one policy-relevant outcome, the reduction of cervical
cancer incidence.

Concordance between modeled age- and HPV type-spe-
cific prevalence outcomes was reasonable, with consistent
fits achieved for important calibration targets including
high-risk HPV prevalence, HPV type distribution within
neoplasia and cancer, and cervical cancer incidence. In
terms of external consistency, model performance was
deemed reasonable by comparison of additional modeled
outcomes in the presence of screening to independent
studies not used to parameterize the model.

Prior research on model calibration and validation and
the quantification of uncertainty has spanned many dis-
ease areas and disciplines. Important aspects of this
research include data synthesis useful for model parame-
terization, calibration, and evaluation [105,108-110];
methods to use evidence in model calibration and quan-

External consistency of model output compared to independent dataFigure 4
External consistency of model output compared to independent data. (Panels A through D) Black vertical bars rep-
resent the 95% confidence intervals of each evaluation target. Dashed orange lines represent the results from matched model 
outputs in the presence of screening. Vertical axes represent prevalence, proportion, or incidence reduction as appropriate, 
and horizontal axes represent age or other categories as appropriate.
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External consistency of model output compared to independent dataFigure 5
External consistency of model output compared to independent data. (Panels A and B) Black vertical bars represent 
the 95% confidence intervals of each evaluation target. Dashed orange lines represent the results from matched model outputs 
in the presence of screening. Vertical axes represent prevalence, proportion, or incidence reduction as appropriate, and hori-
zontal axes represent age or other categories as appropriate.
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Uncertainty in cancer reduction from alternative prevention strategiesFigure 6
Uncertainty in cancer reduction from alternative prevention strategies. The figure depicts histograms (gray bars) 
representing the distribution of cancer reductions (x-axes) expected from HPV vaccination, cytology screening at 1, 2, 3, or 5 
year intervals, and the combination of screening and vaccination. The distribution of cancer reduction represents the uncer-
tainty in policy-relevant outcomes attributable to parameter uncertainty identified through calibration.
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Table 3: Pair-wise Correlations between Cancer Reductions due to Vaccination and Screening at Different Frequencies †

Screen only, q1 Screen only, q2 Screen only, q3 Screen only, q5 Vaccine only Screen and vaccine, q1 Screen and vaccine, q2 Screen and vaccine, q3 Screen and vaccine, q5

Screen only, q1 1.000

Screen only, q2 0.981* 1.000

Screen only, q3 0.968* 0.995* 1.000

Screen only, q5 0.952* 0.985* 0.996* 1.000

Vaccine Only -0.043 -0.036 -0.044 -0.037 1.000

Screen And Vaccine, q1 0.122 0.104 0.097 0.108 0.866* 1.000

Screen And Vaccine, q2 0.143 0.129 0.125 0.138 0.848* 0.991* 1.000

Screen And Vaccine, q3 0.139 0.124 0.121 0.137 0.845* 0.985* 0.998* 1.000

Screen And Vaccine, q5 0.131 0.121 0.119 0.135 0.867* 0.984* 0.996* 0.997* 1.000

† q1, q2, q3, and q5 mean screening every 1, 2, 3, and 5 years respectively.
* Pair-wise correlation coefficient is significant (p < 0.05)
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tification of parameter uncertainty [111-113]; and meth-
ods to alleviate the computational burden associated with
all parts of model calibration and validation [114-118].

A broad range of modeling techniques has been used to
evaluate cervical cancer screening and vaccination, though
researchers have only recently begun to integrate, apply,
and extend work on model calibration and validation
techniques to models of HPV and cervical cancer [22].
Numerous computer models based on Markov cohorts
have evaluated alternative cervical screening policies in
the absence of HPV vaccination [10-21]. Additionally a
European microsimulation of cervical cancer has been
developed [119,120]. Subsequent models considered
both screening and vaccination [121-125].

Dynamic transmission models have been reported for
Finland [126,127] and the United States [103,128-130].
Key features of dynamic transmission models, which will
become more important as data become available on vac-
cine efficacy in males, include their ability to incorporate
the natural history of HPV in men and women, reflect
transmission dynamics over time, and endogenously cap-
ture herd immunity. Because such models require data on
HPV transmission and sexual partnerships data in addi-
tion to data on disease natural history, they involve more
uncertain parameters, and thus far, have not considered
oncogenic HPV types other than HPV-16 and HPV-18.

Several recent studies have undertaken methodological
efforts related to those in this study. In a model of HPV in
Brazil, Kim et al. [22] used an iterative approach to cali-
brate a natural history model of cervical cancer to longitu-
dinal data to elucidate the differential impact of selected
uncertain assumptions and then employed likelihood-
based calibration. Based on data from a Canadian study,
Burchell et al. [131] explored heterosexual HPV transmis-
sion probabilities, using a stochastic computer simulation
to search for transmission probabilities consistent with
the study's 95% confidence intervals. The model identi-
fied parameter uncertainty for transmission parameters in
comparison to one epidemiologic study. Van de Velde et
al. [125] calibrated a model of HPV and cervical cancer,
identifying multiple parameter sets that fit North Ameri-
can epidemiologic data, including Canadian cancer data.
However, their evidence combination methods did not
account for differences in study size, and their fitting pro-
cedure was not likelihood-based. Like Van de Velde and
colleagues, our model's unknown and uncertain inputs
are calibrated to observed data, and multiple parameteri-
zations are identified. Like Burchell et al., we identify
plausible parameter combinations, relying on a likeli-
hood-based approach to fit model outputs to confidence
intervals derived from multiple data sources. Because our
model simulates individual women and is analyzed as a

first-order Monte Carlo simulation, in addition to captur-
ing the effects of vaccination, it can account for each
woman's previous history and allow her history of screen-
ing, vaccination, health, and behavior to affect her future
risk.

Our study has a number of limitations. While we searched
1,000,000 parameter sets, searching more extensively
might yield marginal improvements in fit to the observed
data. On the other hand, the data used for calibration
come from heterogeneous sources whose evidence is not
entirely consistent. Insistence on an exact match to avail-
able data may lead to over-fitting and thereby underesti-
mate uncertainty in model outcomes. Another limitation
is the availability of data for model design and parameter-
ization. Areas of particular importance include sexual
activity patterns and HPV transmission in adolescents,
characteristics of natural immunity, and host genetic het-
erogeneity. Results from our study support the need for
further studies of HPV natural history in order to narrow
parameter uncertainty. Findings from future studies will
likely necessitate updating our current model and param-
eter estimates through recalibration. While our model can
be linked indirectly to a separate dynamic transmission
model, it does not directly capture herd immunity effects
[103]; we opt instead for a detailed monthly microsimu-
lation that includes multiple HPV types and allows for
individual differences in risks and screening patterns
based on past history – features that are less readily incor-
porated into standard dynamic transmission models.
Finally, we recognize that a focus on cervical cancer omits
the impacts of preventing other rarer cancers that occur in
both men and women [132]. This is an important area of
future work as better data become available.

Our model makes a set of causal assumptions about the
natural history of HPV and cervical cancer, embodied in
the model's structure, which are consistent with current
biologic understanding of cervical disease. Systematic
model calibration results in multiple alternative model
parameterizations consistent with epidemiologic data.
With our calibrated model, we were able to generate pre-
dictions about the effects of screening patterns in the U.S.
on HPV, CIN, and cancer that were reasonably consistent
with multiple independent studies. The model is not,
however, intended as a formal model of causal effect that
proves specific relationships in the biology and epidemi-
ology of HPV and cervical cancer. Rather, the model is
intended to comment on current questions of policy rele-
vance from a decision analytic standpoint, reflecting the
uncertainty in predicted outcomes that exists even in
models that are consistent with observed population data.

While we report reasonably favorable model performance
results with respect to three large studies not used in
Page 15 of 20
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parameterization or calibration, model fits to sometimes
wide confidence intervals are imperfect. One important
future direction would be to continue to refine and
expand the set of evaluation targets. When newer data
from ongoing population studies of HPV vaccines emerge,
they may provide useful opportunities to conduct evalua-
tion exercises with respect to possible changes in the HPV
type distribution between unvaccinated and vaccinated
cohorts [133]. Another future direction is the assessment
of model structure uncertainty. Research in other disease
areas has relied largely on review and comparison of cost-
effectiveness results to assess the differential effects of
model structure assumptions [134-136]. Recent studies
have compared alternative model structures developed by
different groups [137,138]. Few studies in health-related
areas have simultaneously considered model structure
and parameter uncertainty [139,140].

Conclusion
Our systematic approach to the parameterization, calibra-
tion, and evaluation of a complex microsimulation of
HPV and cervical cancer identified many independent
natural history parameter sets that fit equally well to mul-
tiple epidemiologic targets. As cervical cancer prevention
options evolve, and as new evidence becomes available
from ongoing studies, an empirically calibrated model is
one of many tools that can provide policy-makers with
important information on the expected benefits associ-
ated with different policies. By conducting comparative
analyses of different strategies using a random sample of
the good-fitting parameter sets, decision makers are also
provided with a description of the uncertainty in policy
outcomes that follows from uncertainty in model param-
eters.
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