The Importance of Prevalence on Test Thresholds & Outcomes: A Tuberculosis Testing Model

MOTIVA

Overview	
 Diagnostic & screening tests often evaluated by # of: 	• These
 True positives (TPs) 	
 False positives (FPs) 	
 True negatives (TNs) 	• For te
 False negatives (FNs) 	speci

Relative Effects of Sensitivity & Specificity in Infec

Test characteristics

Impact on results **Testing goal**

Treatment goal

True positives

High Sensitivity

- Identify people with disease
- Treat infection
- Prevent future illness & disease spre

Potential harms of

opposite test

characteristic

Low sensitivity:

- False Negatives
- Potential future illness and suffering
- Potential future spread of disease

Sensitivity, Specificity, & TP & FP Balance

- Sensitivity & specificity are negatively associated within a given test: ↑ Sensitivity (e.g., by changing positive test threshold) leads to: \downarrow specificity and \uparrow TPs & FPs

 - ↑ Specificity leads to: \downarrow sensitivity and \downarrow TPs & FPs
- Sensitivity-specificity **balance** sought between # FPs tolerated per additional TP gained
- Many factors affect:
- the **relative effects** of sensitivity & specificity
- the **balance** of true & false results
- **decisions** regarding optimal thresholds
- Interaction of two factors disease prevalence and positive threshold cause results to differ in high- vs. low-prevalence settings
- Across settings:
- disease prevalence varies
- positive thresholds are set uniformly

Prevalence affects the performance of a test, and this study evaluates the magnitude of that impact to see if it has potential policy significance.

OBJECTIVE

To estimate the impact of disease prevalence in decisions regarding positive thresholds & test strategies, by: Applying two simple models:

a) A hypothetical generic model

b) A worked example of screening for latent tuberculosis infection (LTBI) in settings of varying prevalence

Tanya G.K. Bentley, PhD¹, Antonio Catanzaro, MD², Ted Ganiats, MD² ¹Partnership for Health Analytic Research, LLC, Beverly Hills, California, ²University of California, San Diego, San Diego, California

TION	
se outcomes are largely determined by:	• W
Sensitivity & Specificity	_
tests measured on <i>continuous</i> scale, sensitivity & cificity are largely determined by:	• W
Positive Test Threshold	 W
ctious Disease	
High Specificity	
True negatives	
 Identify people without disease 	
 Avoid unnecessary treatment 	F
ead	D Pre
Low specificity:	
False Positives	
Bodily harms, toxicity, and financial costs of unnecessary treatment	
Social stigmatization	
Confidence in screening program	
	•
	•
	So • (
	• (

METHODS

Generic Model

Ve modeled # TPs & FPs in scenarios defined by:

Test sensitivity: 50%, 60%, 70%, 80%

- Test specificity: 90%, 95%, 98%, 99%
- Disease prevalence: 20%, 40%, 60%, 80%

Ve calculated results as:

- TP = sensitivity * prevalence * N
- FP = (1-specificity) * (1-prevalence) * N
- where N = 1,000 hypothetical individuals

Tuberculosis Model

to:

- T-SPOT.TB*

* QFT-IT: Cellestis, Carnegie, Australia; T-SPOT.TB: Oxford Immunotec, Oxford, U.K. ** World Health Organization Global TB Database

RESULTS & IMPLICATIONS

<u>Generic Model</u>									
	# <u>True</u> Positives when Varying Test Sensitivity				# <u>False</u> Positives when Varying Test Specificity				
Disease revalence	50%	60%	70%	80%	90%	95%	98%	99%	Country
20%	100	120	140	160	80	40	16	8	U.S.
40%	200	240	280	320	60	30	12	6	Mexico Brazil
60%	300	360	420	480	40	20	8	4	Thailand Ivory Coas
80%	400	480	560	640	20	10	4	2	

Increasing sensitivity increased true positives Increasing specificity decreased false positives the absolute impact of:

Sensitivity was greater in high-prevalence settings

Specificity was greater in low-prevalence settings

Consider implications for two different settings:

	Two Countries		
	Developed	Not Developed	
Health Care Access	Better	Limited	
TB Prevalence	Low	Higher	
Resistant TB	Rare	More common	

• For the developed country, the 7% increase in early detection may benefit too few people to justify the high burden of false positives. • For the developing country, with higher disease prevalence, the greater increase in early detection may be worth the increased treatment of false positives

• However, this is not to say that the trade-off is not worthwhile in the developed country, or that it is worthwhile in the developing country • Resources and local priorities and values should determine that.

• Rather, the tradeoff may differ by orders of magnitude between settings, as prevalence varies.

CONCLUSIONS

In summary: Positive test thresholds tend to be set globally \Rightarrow This has unintended consequences Within a given test, sensitivity & specificity vary with positive test thresholds \Rightarrow This results in different outcomes between settings Therefore we conclude that: Decisions regarding positive test thresholds within tests should be made locally not globally and Strategic decisions between tests should be made locally not globally ...by incorporating disease prevalence (along with other factors)

• We estimated TPs & FPs when switching between two tests for latent tuberculosis infection (LTBI): In-tube QuantiFERON-TB Gold (QFT-IT)*

In 5 countries of varying LTBI prevalence^{**}

Tuberculosis Model Change in test outcomes with: 7% \uparrow in sensitivity, 11% \downarrow in specificity LTBI ↑ in FPs FP / TP ↑ in TPs prevalence 329 31.9 10,483 5% 29% 2,018 7,829 3.9 39% 2,712 6,739 2.5 47% 3,272 5,859 1.8 55% 3,823 4,992 1.3 ast

With greater prevalence:

So:

•7% increase in sensitivity increased true positives. •11% decrease in specificity decreased in false positives.

•Settings with lower prevalence would have to pay a "price" of accepting more false positives for each true positive gained than would settings of higher prevalence.

BOTH face TRADEOFF	
introducing T-SPOT.TB:	
11% \downarrow specificity,	
7% ↑ sensitivity	