Cost Effectiveness of Treatments After Failure of a First-Line Hypomethylating Agent in Myelodysplastic Syndromes (MDS)

Christopher R. Cogle, MD¹; Sudipto Mukherjee, MD, MPH²; Moira E. Lawrence, PhD³; Tom McKearn, MD, PhD³; Rita Percy³; Michael E. Petrone, MD, MPH³; Scott Megaffin³; Ayanna M. Anene, BS⁴; Jesse Ortendahl, MS⁴; Dorothy Romanus, RPh, PhD⁴; Tanya G.K. Bentley, PhD⁴

¹University of Florida; ²Cleveland Clinic; ³Onconova Therapeutics, Inc.; ⁴Partnership for Health Analytic Research, LLC

BACKGROUND & OBJECTIVE

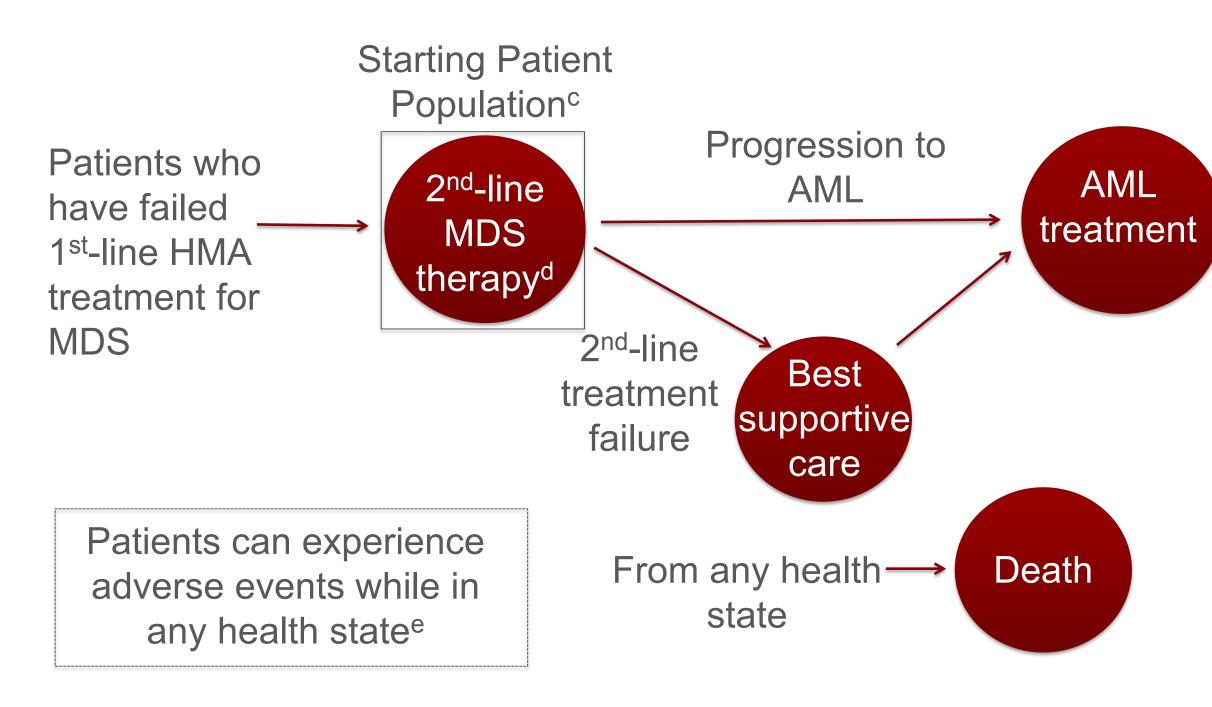
Background

- Myelodysplastic syndromes (MDS) are a group of disorders characterized by cytopenias and multiple genetic abnormalities¹
- More than 86% of patients with MDS are 60 years or older²
- High-risk elderly MDS patients are typically treated first with hypomethylating agents (HMAs)³; however these are not curative and require patients to consider 2nd line treatments⁴
- Selecting the optimal 2nd-line treatment in MDS patients is challenging due to a lack of therapeutic options and little data regarding the risks and benefits of existing disease management

Objective

 Evaluate the clinical outcomes, economic impact, and cost effectiveness of currently available treatment options for MDS patients who failed 1st-line HMA therapy

METHODS


Overview

- Study type: Markov cohort model
- Patient population: MDS patients who progressed on or failed previous treatment with HMAs
- Time-horizon: Lifetime
- Model cycle length: 4 weeks
- Perspective: Payer
- Model strategies:
 - Best supportive care (BSC)
 - Low-intensity chemotherapy (LIC) with BSC
 - High-intensity chemotherapy (HIC) with BSC
 - Switching HMA treatment with BSC
 - Hematopoietic cell transplant (HCT) with BSC
- Clinical and cost parameters were selected from published sources; when published data were not available, inputs were derived based on expert opinion
- Results were reported as:
 - Costs (2014 USD)
 - Survival in life years (LYs)
 - Incremental cost-effectiveness ratio (ICER)

Model Structure

- Hypothetical cohorts of patients who had failed a 1st-line HMA were simulated during each 4-week cycle
- After entering the model at the time of initiation of 2nd-line treatment, patients could:
 - Experience a treatment- or disease-related adverse event
 - Discontinue treatment
 - Progress to acute myeloid leukemia (AML)
 - Die

Figure 1. Model Schematic^{a,b}

- ^a The schematic depicts a Markov model that simulates patients through 4-week cycles for their lifetime, and estimates survival and payer costs.
- b Red circles represent model health states.
- ^c Starting population represents MDS patients after failure of initial HMA therapy.
- d 2nd-line treatment strategies/comparators are: BSC, HMA, LIC, HIC, or HCT.
- e Adverse events include thrombocytopenia, anemia, and neutropenia.

Table 1. Treatment Cost Estimates

Treatment Costs	Cost \$US 2014 ^a (per 4-week cycle)	Source
BSC ^b	\$1,749	5
2 nd HMA ^c	\$4,038	
LICc	\$56	6-8
HICc	\$38,554	
HCT (per patient)	\$161,475	9
AML	\$12,470	10

^a Assuming 1.8m² BSA. Wastage included. The least expensive generic product was selected when identical package sizes of the same drug were available.

^b Includes costs of hospitalization, physician visits, supportive care medication, lab tests ^c Product administration cists added on a per-cycle basis.

Table 2. Clinical Parameters

MDS Treatment	Value	Source
Median overall survival (months)		
BSC	4.0	11
2 nd HMA	6.0	12, Expert Opinion ^a
LIC	7.3	
HIC	8.9	11
HCT	19.0	_
Median treatment duration (numbe	r of four-week	cycles)
HMA	4.0	12
LIC	4.0	Expert Opinion
HIC	2.5	Expert Opinion
Proportion of Patients Progressing	to AML	
All Strategies	35%	Expert Opinion

^a Estimated based on consultations with various practicing clinical oncologists.

Table 3. Adverse Event Utilization Rates and Costs

Utilization Rates	Utilization (per 4-week cycle)	Source
Red Blood Cells (units per patient)a,b	
BSC	5.2	_
2 nd HMA	2.8	-
LIC	5.4	-
HIC	5.0	
HCT	9.0	
Platelet (units per patient)b		13, Expert opinior
BSC	1.2	-
2 nd HMA	2.2	-
LIC	3.8	
HIC	5.0	_
HCT	9.0	

Growth Factors (all strategies, proportion of patients requiring a growth factor)

Filgrastim	0.4	
Epoetin	0.5	Data on file ^c
Adverse Event Costs	Cost \$2014	Source
Red Blood Cells (per transfusion)d	\$789	

Red Blood Cells (per transfusion)	\$789	
Platelets (per transfusion) ^d	\$633	
Growth Factors (per patient, per model cycle)d		14, 15
Filgrastim	\$484	
Epoetin	\$300	

^a Blood requirements and growth factor use incorporated into the model for costing purposes, to reflect resources utilized to treat thrombocytopenia, anemia, and neutropenia.
 ^b Blood requirements for BSC, HMA and LIC based on Levy 2014, and doubled based on expert opinion. Values for HIC and HCT based solely on expert opinion.
 ^c Burden of illness analysis of OptumInsight data to estimate healthcare utilization among

2nd-line MDS patients, conducted by PHAR, LLC, 2014.

d For costing, model assumed patients can receive up to 2 units in a single infusion.¹⁴

RESULTS

- Treating patients who had failed 1st-line HMA with BSC was the least expensive option (\$55,343 per person) but provided the shortest survival: 0.48 years.
- Switching patients to another HMA for 2nd-line treatment increased costs to \$84,625 and extended survival only modestly.
- HCT patients had the highest survival (2.26 years) and lifetime costs (\$492,359).
- Compared with BSC, the ICER for LIC was \$87,343/LY gained, while HIC and HCT had ICERs of \$284,303 and \$291,375/LY, respectively.
- The strategy of switching patients to a second HMA was removed during the calculation of ICERs due to extended dominance since the next-best strategy, namely LIC, provided greater clinical benefit and had a more attractive ICER.

Table 4. Results: All Strategies

Strategy	Lifetime Costs (\$)		Mean Survival (years)		ICER
	Absolute	Difference ^a	Absolute	Difference ^a	(\$/LY)
BSC	\$55,343	-	0.48	-	-
2 nd HMA	\$84,625	\$29,282	0.72	0.24	Dominatedb
LIC	\$89,877	\$5,252	0.88	0.15	\$87,343
HIC	\$146,519	\$56,642	1.08	0.20	\$284,303
HCT	\$492,359	\$345,840	2.26	1.19	\$291,375

^a Difference compared to row above.

CONCLUSION

- For MDS patients who relapsed after, failed to respond to, or progressed during administration of a 1st-line HMA, subsequent alternative active treatments:
 - Provide some survival benefit
 - Substantially increase costs and treatment-related morbidity
- The significantly greater cost and accompanying increase in morbidity associated with more aggressive approaches (HIC and transplant) could be interpreted as inefficient according to current societal standards.
- In addition, the use of treatments such as transplant may be limited due to the risk of transplant-related adverse events, patient health status, and the availability of a suitable stem cell donor.
- These findings expose an unmet need among MDS patients after failure of 1st-line HMA therapy.
- The development of lower-cost, highly-efficacious 2nd-line MDS treatment options which do not cause an increase in cytopenia would benefit:
 - Clinical decision-making
 - Patient outcomes
 - Healthcare resource allocation

Limitations

- Further studies are needed to measure the clinical impact of 2nd-line MDS treatments as there were limited data available to inform the clinical parameters used in this analysis.
- This analysis did not consider the impact of treatments on quality of life. We intend to explore this in subsequent analyses.

REFERENCES

1. Greenberg J Natl Compr Canc Netw 2013; 2. Cogle Blood 2011; 3. Wang Leuk Res 2011; 4. Steensma Hematol Oncol Clin North Am 2010; 5. Pan Clin Ther 2010; 6. Fenaux Lancet Oncol; 7. National Comprehensive Cancer Network (NCCN) 2014; 8. PriceRx® Wolters Kluwer 2014; 9. Majhail Bone Marrow Transplant 2013; 10. Lang Drugs Aging 2005; 11. Prébet J Clin Oncol 2011; 12. Borthakur Leuk Lymphoma 2008; 13. Levy Curr Oncol 2014; 14. Gidwani J Med Econ 2012; 15. Goss Cancer Control 2006.

^b Dominated indicates there is another strategy (namely LIC) that provides greater clinical benefit with a more attractive cost effectiveness ratio.